黑龙雷神哪个好:概率与统计难点分析及教学建议

来源:百度文库 编辑:九乡新闻网 时间:2024/04/29 02:42:00
概率与统计难点分析及教学建议河北师范大学数学与信息科学学院 程海奎#TRS_AUTOADD_1298013129545 {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1298013129545 P {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1298013129545 TD {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1298013129545 DIV {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1298013129545 LI {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}/**---JSON--{"":{"margin-top":"0","margin-bottom":"0"},"p":{"margin-top":"0","margin-bottom":"0"},"td":{"margin-top":"0","margin-bottom":"0"},"div":{"margin-top":"0","margin-bottom":"0"},"li":{"margin-top":"0","margin-bottom":"0"}}--**/DIV.MyFav_1298013353609 P.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1298013353609 LI.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1298013353609 DIV.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1298013353609 P.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt; PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1298013353609 LI.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt; PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1298013353609 DIV.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt; PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1298013353609 P.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; FONT-FAMILY: "Times New Roman"}DIV.MyFav_1298013353609 LI.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; FONT-FAMILY: "Times New Roman"}DIV.MyFav_1298013353609 DIV.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; FONT-FAMILY: "Times New Roman"}DIV.MyFav_1298013353609 P.MsoAcetate{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1298013353609 LI.MsoAcetate{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1298013353609 DIV.MsoAcetate{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1298013353609 DIV.Section1{page: Section1}DIV.MyFav_1298013353609 OL{MARGIN-BOTTOM: 0cm}DIV.MyFav_1298013353609 UL{MARGIN-BOTTOM: 0cm}

统计与概率研究随机现象的规律性.对新课标教材中的统计与概率内容,就知识层面和方法看,似乎不难.但蕴涵的概率观点和统计思想却不容易了解.那么,概率的意义究竟是什么?概率难在何处?统计推断有什么特点?如何评价统计推断的结果?统计与概率的关系是什么?下面就这些问题作一简单分析.

 

一、概率的难点分析

 

1.概率的抽象性.像长度和面积这些度量都比较直观,对温度的高低在一定范围我们可以感知.概率作为随机事件发生的可能性大小的度量,直观看不见,也无法感知,太抽象了.

 

2. 统计规律的隐蔽性.随机现象有其偶然性的一面,也有其必然性的一面,这种必然性表现为大量重复试验时,事件频率的稳定性.这种规律称之为统计规律性.频率的稳定性是概率论的理论基础,它说明随机事件发生的可能性大小是事件本身固有的、不随人们的意志而改变的客观属性,它是可以度量的.同时它也给出了度量的一种方法.由于统计规律是通过大量重复试验揭示的,所以在利用概率思想进行决策时,会产生理解上的困难.因此,只有深刻理解概率与频率的关系、概率与频率的本质区别,才能正确理解概率的意义.对概率与频率的关系的认识可以按以下四个层次进行,而大数定律不要求学生了解.

 

直观认识.概率描述事件发生的可能性大小,它是由事件本身唯一确定的一个常数;而频率反映在n次试验中,事件发生的频繁程度.一般地,如果事件A的概率较大,在重复试验中,它发生的就比较频繁,因此A的频率也较大;同样如果事件A的概率较小,它的频率也较小.反之也对.

 

具体试验.前人对频率的稳定性的认识,首先是通过大量重复试验获得的,而后大数定律作了严格的数学刻画.在教学中虽然不必做很多试验,但通过适当的试验,借助统计图表示频率的稳定性规律,可以增加直观认识.借助计算机模拟试验也可以节省大量时间.对频率的认识应该先认识稳定性,其次是频率的不确定性.即随着试验次数的增多,频率的波动越来越小,逐渐稳定在一个常数附近.但当试验次数较少时,频率的波动可能比较大.

 

实例辨析.有些资料这样叙述:“试验次数越多,用频率估计概率就越准确”.这样的叙述严密吗?以掷硬币为例,已知“正面向上”的概率为0.5,掷两次硬币,可能频率为是0.5,用频率估计概率的误差为0;而掷100次硬币,也可能频率为0.2,误差为0.3.显然上面的叙述不严密,也可以说是错误的.下面的案例可能增加对概率与频率的关系的近一步的理解(不需要学生了解计算方法).

 

案例1  分别掷100次、200次、1000次硬币,用“正面向上”的频率估计概率,在给定误差范围内,计算估计的可靠性.

 

表示掷n次硬币“正面向上”的频率,的取值具有不确定性,用EXCEL计算结果如下表:

         

比较严格的叙述为:“当试验次数较少时,用频率估计概率误差较小的可能性较小.试验次数越多,用频率估计概率误差较小的可能性越大”.

 

精确刻画.大数定律对概率与频率的关系作了严格的数学描述.设事件A的概率为p,在n次重复试验中,A发生的频率为,则对任意的正数,都有

 

3. 概率定义的复杂性.概率是事件发生的可能性大小的度量.这是概率的描述性定义,它虽然揭示了概率的本质,但对概率具有哪些性质,如何计算或估计事件的概率都没有帮助.“概率是频率的稳定值”,这是概率的统计定义.它给出了估计事件概率的一种方法,而且明确了概率作为一种度量,应该具有非负性、规范性和可加性.但频率还具有随机性的特征,特别当试验次数不大时,很难知道这个稳定值是什么.

 

为了能较好地理解概率的意义,我们应该采用由具体到抽象,由简单到复杂,由特殊到一般的方式.先认识频率及其性质,频率和概率的关系;然后讨论古典概率,几何概率这些具体简单的模型;从中归纳概率的本质特征,最后给出概率的公理化定义(高中阶段不作要求).

 

案例2 美国的一个电视游戏节目.

 

有三扇门,其中一扇门后面是一辆轿车,另两扇门后面各有一只羊.给你一次猜的机会.猜中羊可以牵走羊,猜中车可以开走车.当然大家都希望能开走汽车.现在假如你猜1号门后面是车,然后主持人把无车的一扇门(比如2号门)打开.现在再给你一次机会,请问你是否要换3号门?

 

这是一个概率决策问题,结论只有换与不换两个.在当时引起了人们极大的兴趣,众说纷纭,各种各样的观点都有.足以看出概率问题是有一定难度的.

 

观点一  一位数学博士说:美国公民的数学水平也太差了,这三扇门后面有车的可能性是一样的,都是1/3,所以不必换.

 

观点二 假定主持人打开的是2号门,既然2号门后面没有车,那么车要么在1号门后面,要么在3号门后面,概率各是1/2,所以不必换.

 

观点三 车在1号门后面的概率是1/3,于是在2号门或3号门后面的概率就是2/3 ,现在既然2号门后面没有车,所以车在3号门后面的概率为2/3,因此应该换.

 

哈佛大学概率教授(Diaconis)应电视台邀请,进行了表演.以一张红桃扑克牌表示车,两张黑桃扑克牌表示羊.按照规则要求,演示了8次,结果是有6次显示应当换.

 

Diaconis 教授说:概率的判断是依靠大量试验才获得的.如果这个游戏允许多次重复,那一定是“换”为好.如果只给你一次机会,那是很难说的.

 

  由于随机性,如果1号门后面确实是车,你猜对了,此时要换反而得不到车.如果1号门后面没有车,此时换就得到车.那么换与不换应该依据什么为准则?在此问题中,应以得到车的概率最大为准则.三种观点在应用概率思想方面都是正确的,造成不同结果的原因在于对概率大小的判断上.

 

首先注意的一点是,主持人是知道汽车在哪扇门后的.换的结果是将汽车换成羊,或将羊换成汽车.选择1号门,得到汽车的概率为1/3,得到羊的概率为2/3.如果换3号门,得到羊的概率为1/3,得到汽车的概率为2/3.从概率决策的角度看应该换,观点三是正确的.

 

如果主持人也不知道那扇门后面是车,而是任意选择一扇门,此时换与不换等价于抽签时是先抽还是后抽.我们知道抽签不分次序先后,得到车的概率都是1/3.但现在的问题是:主持人打开的一定是无车的门,所以观点一是错误的.          

 

当主持人打开无车的2号门时,如果让你在1号门和3号门之间重新任选一扇门,得到车和羊的概率都是1/2.现在不是让你重新任选一扇门,而是问你是否要换.重新选择和交换结果是不同的,所以观点二也是错误的.

 

Diaconis 教授的观点是正确的.既然在概率大小的判断上有分歧,通过重复模拟试验,借助频率的大小来判断最有说服力.但遗憾的是重复试验次数太少,频率的值很不稳定,说服力不强,当时并没有消除争议.另外,即使就一次机会,也应选择得到车的概率较大的方案.

 

二、统计的难点分析

 

真实的数据能提供科学信息,数据能帮助我们了解世界,许多科学结论都是通过分析数据而得到的,借助数据提供的信息作出的判断才比较可信.因此,“运用数据进行推断”的思考方法已成为现代社会普遍应用而且高效的思维模式,而“用样本推断总体”又是统计最核心的思想方法.

 

统计学已有2000多年的历史,按其发展的历史阶段和统计方法的构成看,统计学可以分为描述统计和推断统计.描述统计的内容包括统计数据收集的方法、数据的加工和整理方法、用图表表示数据的方法、数据分布特征的概括与分析方法等.推断统计研究如何依据样本数据推断总体的数量特征的方法,它以样本数据信息为依据,以概率论为理论基础,对总体未知的数量特征作出以概率形式表述的推断.那么统计内容学习的难点在哪里呢?

 

1.确定性数学思维模式对统计思维方法的影响

 

统计是以样本数据为基础,通过对数据的整理、描述和分析,发现数据的特征或规律,从而对总体的特征作出推断.它所采用的是归纳推理,属于合情推理范畴.带有很强的试验性.确定性数学主要运用演绎推理的方式,即从已有的事实(包括定义、公理、定理)出发,按照规定的法则证明结论,或揭示数学规律.研究确定性数学,是不能用个别举例或验证代替一般的证明的.比如可以通过测量或拼接的方法,归纳得出“三角形内角和等于180°”,但是,哪怕你度量了无数次,也只能说发现了这一结论,未经证明之前仍不能作为定理.统计学习中,这种思维方式的转变需要一个过程.

 

2. 统计方法的评价与统计结果的解释

 

对确定性数学,在给定的条件下,结论是完全确定的.对其结果可以用“对”和“错”来评判.用样本推断总体,由于样本数据和总体的不一致性,会产生代表性误差,由于样本的随机性,会产生随机误差,从而造成估计的结论也具有不确定性.因此,评价一种估计方法的好坏,不能仅依一次估计的误差大小来衡量,而应考虑所有可能样本的情况下,整体误差的大小.即在相同的误差范围内,置信度大的方法好,或在相同的置信度下,误差小的方法好.对统计结论也不能用“对”和“错”来解释.

 

对某种统计方法,既要让学生认识到方法的合理性,又体会到结果的不确定性,这是渗透统计思想不可缺少的.问题是,在学生没有或具有很少的概率知识背景下,在教学中应该如何处理?这肯定是一个难点.

 

案例3 现有n个实数,在求这n个数的平均值时,对每个数四舍五入保留整数,近似数分别为.令,估计误差的范围.

 

在确定性数学中,,所以

 

当我们用概率形式来表示时,则有,当取时,则有.估计要比精确得多,但只能以95%的把握保证其正确性.

 

3.统计原理的理解与运用

 

统计推断的依据是一些统计原理.例如,统计估计时依据极大似然原理,假设检验时依据小概率原理,回归分析依据最小二乘原理等.它们都是人们在长期的社会实践中归纳出来的一般原理.统计原理不同于数学公理或定理,公理是大家公认的事实,是绝对正确的;定理是经过严密的逻辑证明是正确的事实.而统计原理本身并不是绝对正确的,利用这些原理进行推断肯定会犯错误.如何理解这些原理,并将其运用到统计推理中,这是又一个难点.

 

案例4  目前流行的甲型H1N1流感传染性很强,假设在人群中的感染率为20%.现有Ⅰ、Ⅱ两种疫苗,疫苗Ⅰ对8个健康的人进行注射,最后结果为无一人感染.疫苗Ⅱ对25个健康的人进行注射,最后结果为有一人感染.你认为这两种疫苗哪个更有效?

 

直观分析:如果不考虑概率,注射疫苗Ⅰ后感染率为0,注射疫苗Ⅱ后感染率为4%,似乎疫苗Ⅰ更有效些.但现实中感染率只有20%,也就是100人中大概只有20人会感染上.假设疫苗Ⅰ完全无效,“8人注射无一人感染”仍有较大的可能性.假设疫苗Ⅱ无效的条件下,“25人注射只有1人感染”的可能性要小的多.依据小概率原理,判断疫苗Ⅱ比疫苗Ⅰ可能更有效些.

 

推理过程:设事件A=“8人注射无一人感染”,B=“25人注射有1人感染”,假设疫苗Ⅰ无效,A发生的可能性较大,没有充足的证据说明疫苗Ⅰ有效.

 

假设疫苗Ⅱ无效,B是一个小概率事件,依据小概率原理,认为B在一次试验中是不会发生的,但现在竟然发生了,和统计原理相违背,从而否定假设,认为疫苗Ⅱ有效.

 

这种推理称为假设检验.所运用的推理方式类似于数学反证法.应用数学反证法,当推出和已知事实矛盾的结果时,否定假设.假设检验是一旦小概率事件发生,就否定假设.但小概率原理不是绝对正确的事实,所以推理有可能犯错误.我们追求的是使犯错误的概率尽可能小.

 

  三、对统计与概率教学的几点建议

 

  1.突出核心思想,把握重点和难点.对概率意义和统计思想的理解,是教学的重点,也是难点.不要把概率教学变成复杂的概率计算;把统计教学变成单纯的数据处理和计算技巧;不要纠缠一些无关紧要的细节而干扰主题.现在的情况是,许多学生(包括数学专业的大学生),可以计算很复杂的概率,但面对需要用概率和统计思想解决的实际问题时,就显得束手无策.这说明教学中,过多关注了操作技能,忽视了思想方法的理解.

 

  案例5 “离散型随机变量”的教学目标.

 

随机变量是随机试验可能结果的数量化表示,它是随试验结果而变化的量,其本质是样本空间到实数集之间的一个映射.引入随机变量的概念,把对随机现象统计规律的研究具体转化为对随机变量概率分布的研究.其重要作用是全面系统刻画随机现象的规律性,大大简化了各种事件的表示,而且可以借助数学分析的工具.本人认为随机变量是我们研究的对象而非研究的工具.

 

离散型随机变量具有如下特征:(1)它的取值依赖于试验结果,因此取值具有随机性,即在试验之前不能肯定它的取值,一旦完成一次试验,它的取值随之确定;(2)所有可能取值是明确的;(3)所有可能取值可以一一列举出来(或取值为有限个或可列个).

 

教学目标:通过对具体实例的分析,归纳概括离散型随机变量的特征,突出随机性特征,引入离散型随机变量的概念;体会引入随机变量的作用;渗透将实际问题转化为数学问题的思想方法.

 

重点是认识离散型随机变量的特征,了解其本质属性,体会引入随机变量的作用.难点是随机变量和普通变量的本质区别.

 

  2.恰当的类比很有效.概率与频率的关系、总体的数字特征与样本的数字特征之间的关系,都比较抽象.可以用某物体长度真值和测量值来类比.

 

  黑板的长度a是客观存在的,但未知.可以通过测量来了解;而测量结果总会有误差,为减少误差,可以用多次测量值的平均数估计a

 

  事件的概率p是客观存在的,但未知,可以用频率估计;频率具有不确定性,估计的误差不可避免,为减少误差,可以增加重复试验的次数.

 

总体指标X的平均值(数学期望)是一个确定的数值,可以用样本的平均值去估计;随机抽取的样本具有随机性,所以样本的平均值也具有随机性,要想估计的更准确些,可以适当增大样本容量.

 

  3.必要的操作试验不可省.概率的统计规律性本身就是通过试验发现的,用样本推断总体的方法,可以认为是试验科学.在高中阶段,由于课时以及学生认知水平的限制,我们不可能也没有必要用严密的方法揭示一些稳定性规律,评价统计方法的优劣.设计恰当的试验,直观认识随机性规律、树立概率观点、理解统计思想是必要的,也是可行的.在一些具体问题中,可以通过试验纠正对概率判断上错误观点,统一认识,消除争议.

 

4.重视反例和极端特例的作用.在揭示数学概念的本质、探索数学定理成立的条件时,反例具有重要的作用.同样,在统计与概率的教学中,一些极端的特例有时会发挥意想不到的作用.

 

例1用频率估计概率,有人认为“试验次数越大,估计得就越准确”.

 

极端特例:掷两枚硬币,有50%的可能得到频率为1/2;而掷1000次硬币,理论上仍有可能得到频率为1.说明“试验次数越大,估计得就越准确”,这样的表述不严密.

 

  例2 从包含100个学生的总体中,随机抽取10名学生作为样本,估计全体学生的平均身高.分别采用不放回抽样和有放回抽样,哪种抽样方式下估计得更准确些?

 

大多数人认为有放回抽样下更准确,实际上恰恰相反.要想说服他们,我们不可能用数理统计的一套理论,通过计算概率或期望和方差,作出判断.

 

 以下两个极端特例都能说明问题.

 

     特例1:采用有放回抽样,有可能同一个体被重复抽到,也有可能10次都抽到同一名学生,此时样本的代表性非常差,估计很难准确.而不放回抽样不会发生这样的情况.

 

     特例2:假定样本容量为100,采用不放回抽样,样本和总体完全相同,估计结果完全确定,没有任何误差.而采用有放回抽样,很难遇到样本和总体完全相同的情况.

 

  例3 小概率原理、极大似然原理是统计推断中最常使用的原理.因为它们都不是绝对正确的,应用这些原理作统计推断,学生理解上有困难.其原因是,大多数情形我们把小于0.05的概率就看成小概率了.那就举概率更小的例子.

 

  乘坐飞机有可能遇到空难,为什么绝大多数人不拒绝坐飞机?因为发生空难的概率太小了(据统计小于300万分之一),我这次不会出事的.这不是已经用小概率原理来决策了吗?

 

  极大似然原理是说:一次试验有多个事件,哪一事件发生了,就认为这个事件的概率最大.当这些事件的概率相同时,应用极大似然原理是最不靠谱的.但在实际推断时,往往这些事件的概率相差悬殊.

 

  例如,有两个箱子,其中第一个箱子装有99个红球,1个白球;第二个箱子装有99个白球,1个红球.任意选择一个箱子,从中任意摸出一球,结果摸出了红球,请你判断球是从哪个箱子中取出的.我想很少有人判断是从第二个箱子中取出的.

 

  在中学概率与统计的教学中,理解概率的意义及统计思想方法是首要目标,这当然不能脱离具体知识这一载体,检验的标准是看学生在实际问题中能否做出合理的决策.教学中做到深入浅出、通俗易懂、尽可能直观地让学生理解概率统计的思想方法,是我们共同追求的目标.

 

参考文献:

 

人民教育出版社、课程教材研究所、中学数学课程教材研究中心.普通高中课程标准试验教科书数学③ (必修)A版.人民教育出版社2007.