魏则西的回答 知乎:高中高一物理期末测试试题习题大全

来源:百度文库 编辑:九乡新闻网 时间:2024/04/29 10:54:32

 

高一物理必修二公式总结
一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as

3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t

7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差

9.主要物理量及单位:初速(Vo):m/s
加速度(a):m/s^2 末速度(Vt):m/s

时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h

注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2) 自由落体

1.初速度Vo=0
2.末速度Vt=gt

3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3) 竖直上抛

1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )

3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。


二、质点的运动(2)----曲线运动 万有引力

1)平抛运动

1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt

3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2

5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2

合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo

7.合位移S=(Sx^2+ Sy^2)1/2 ,

位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R

5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR

7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)

8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)

周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s

角速度(ω):rad/s 向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

3)万有引力

1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)

2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N?m^2/kg^2方向在它们的连线上

3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)

4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2

5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s

6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。

机械能
1.功
(1)做功的两个条件: 作用在物体上的力.
物体在里的方向上通过的距离.

(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)
1J=1N*m
当 0<= a <派/2 w>0 F做正功 F是动力
当 a=派/2 w=0 (cos派/2=0) F不作功
当 派/2<= a <派 W<0 F做负功 F是阻力

(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa

2.功率
(1) 定义:功跟完成这些功所用时间的比值.
P=W/t 功率是标量 功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s 1000w=1kw

(2) 功率的另一个表达式: P=Fvcosa
当F与v方向相同时, P=Fv. (此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率: 当v为平均速度时
2)瞬时功率: 当v为t时刻的瞬时速度

(3) 额定功率: 指机器正常工作时最大输出功率
实际功率: 指机器在实际工作中的输出功率
正常工作时: 实际功率≤额定功率

(4) 机车运动问题(前提:阻力f恒定)
P=Fv F=ma+f (由牛顿第二定律得)
汽车启动有两种模式

1) 汽车以恒定功率启动 (a在减小,一直到0)
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值

2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定 F不变(F=ma+f) V在增加 P实逐渐增加最大
此时的P为额定功率 即P一定
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值

3.功和能
(1) 功和能的关系: 做功的过程就是能量转化的过程
功是能量转化的量度

(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别.

4.动能.动能定理
(1) 动能定义:物体由于运动而具有的能量. 用Ek表示
表达式 Ek=1/2mv^2 能是标量 也是过程量
单位:焦耳(J) 1kg*m^2/s^2 = 1J

(2) 动能定理内容:合外力做的功等于物体动能的变化
表达式 W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功

5.重力势能
(1) 定义:物体由于被举高而具有的能量. 用Ep表示
表达式 Ep=mgh 是标量 单位:焦耳(J)
(2) 重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度

(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关

(4) 弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度

6.机械能守恒定律
(1) 机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep 是标量 也具有相对性
机械能的变化,等于非重力做功 (比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化

(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功

 


第一章力
力的概念
力是一个物体对另一个物体的作用,其中一个物体为施力物体,另一个物体为受力物体.力不能离开物体而独立存在,力的作用效果是使物体发生形变和使物体产生加速度.
力的单位:在国际单位制中力的单位是牛顿,符号为N.
力的方向:力是有大小和方向的,是矢量.
力的三要素:大小,方向和作用点.
力的图示:力可以用一有表示大小的刻度和表示方向的箭头的有向线段来表示.如下图所示.
6.力的测量:用弹簧秤测量.
力的种类:
重力:重力是由于地球的吸引而使物体产生的力(注:不能说重力就是地球对物体的吸引力).
重力的大小:重力大小等于mg,g是常数,等于9.8N/Kg.
重力的方向:总是竖直向下.
重心:重力总是作用在物体的各个点上,但为了研究问题简单,我们认为一个物体的重力集中作用在物体的一点上,这一点称为物体的重心.质量分布均匀的规则的物体的重心在物体的几何中心.其它物体的重心可用悬挂法求出重心位置.
弹力:当相互接触的物体发生形变时,发生形变的物体对使它发生形变的物体产生的力,叫做弹力.
弹力的大小:F=kx(胡克定律),k为弹簧的倔强系数.X为形变量.
弹力的方向:弹力的方向总是与形变的方向相反,且垂直于接触面.
摩擦力:
滑动摩擦力:相互接触的物体,当它们有相对滑动时,在它们的接触面上产生的阻碍它们做相对运动的力,叫做滑动摩擦力.
滑动摩擦力的大小:f= N, 为滑动摩擦系数,N为压力.滑动摩擦系数与物体的材料和物体表面的光滑程度有关.
滑动摩擦力的方向:总是与相对运动的方向相反.
静摩擦力:相互相互接触的物体,当它们有相对滑动的趋势,但又保持相对静止时在它们的接触面上产生的阻碍它们做相对运动的力,叫做静摩擦力.
静摩擦力的大小:总是与跟它反方向的外力的大小相等.
静摩擦力的方向:总是与相对滑动趋势的方向相反.
物体受力分析:
物体受力分析的步骤:首先分析重力,其次分析是否的形变从而分析是否有弹力,第三,分析是否有相对运动或相对运动的趋势,从而分析是否有摩擦力.
物体受力时,只要物体在地球表面或地球附近,就一定有重力,物体间有相互接触,不一定有弹力,也不一定有摩擦力,有弹力不一定有摩擦力,但有摩擦力一定有弹力.
力的运算:
合力,分力,力的合成,力的分解的概念:
当一个力的作用效果与其它几个力的作用效果
相同时,这一个力就叫做那几个力的合力,反
过来那几个力叫做这一个力的分力.已知合力
求分力的过程叫做力的分解;已知分力求合力的过程叫做力的合成.
力的合成:
图解法:A.平形四边形定则:
如右图1所示.
B.三角形定则:利用三角形定则求
合力台下图2所示.
C.多边形定则:如图3所示,将F1,F2,F3,……F6六
个力依次首尾相连,最后将
第一个力的起点到最后一个力的终点的有向线段,即为
合力.多边形定则适用于多力合成.
计算法:A.当分力在同一直线上且方向相同时,直接
相加.即F合=F1+F2
B.当分力在同一直线上且方向相反时,直接用大的力减去
小的力,且合力的方向与大力的方向相同.即F合=F1-F2 C.当分力互相垂直时,可以用勾股定理求出合力,即F= tgθ=
d.特殊情况的力的合成:如果两个分力是大小相等的力,且两分力的夹角为特殊角时,可以用解棱形的办法求解.
3.力的分解:在进行力的分解时,只能求解:已知合力及两个分力的方向,求两分力的大小;已知合力及两分力的方向,求两分力的大小.
①图解法:用力的合成的平行四边形定则(或三角形定则)的逆过程求解.
正交分解法:适用于将一个已知力分解在互相垂直的两个方向上.如图4所示.
力的正交分解的典型例子:
如图5所示,质量物体为m的物体位于水平面
上,受到一个与水平面成θ角的斜向上方的力作
用而保持向右匀速直线运动,则有
N=mg+Fsinθ f= (mg+Fcosθ)
如图6所示,一物体质量为m位于顷角为θ的斜
面上,保持静止,则有
f=mgsinθ N=mgcosθ
C.如图7所示,一根细绳水平拉住
一个电灯,电线与竖直线的夹角为
θ,电灯保持静止.则有:
T1=T2sinθ, T2cosθ=mg
第二章 直线运动
运动的基本概念:
机械运动:一个物体相对于别的物体位置的变动.
参考系:为了研究物体的运动,首先假定为不动的物体或物体系.同一物体的运动,选择不同的参考系,描述的结果可能不同.
质点:用来代替物体的有质量而无大小的点.
位移(s):从初始位置到末位置的有向线段.是描述物体位置变化大小的物理量,它是矢量.
路程:物体运动轨迹的长度,它是标量.
时间和时刻:时间是一段,而时刻是一点.
直线运动:物体沿着直线的运动:
曲线运动:物体沿着曲线的运动.
注意:①只有当物体上各点的运动情况都相同或物体上有运动情况不同的点,但不影响物体的整体运动时,才能把物体看成质点.
②位移与路程的区别与联系:位移是矢量,而路程是标量,只有在单方向直线运动中,路程才等于位移的大小.
运动的描述:
物理量描述:
位置变动的描述——位移s.
运动快慢的描述——速度v:物体的位移跟发生这段位移所用时间的比.即v=,在国际单位 制中速度的单位是m/s,非国际单位还有cm/s,km/h等.
平均速度:=,它粗略地描述了物体的平均运动快慢,是物体在一段位移或一段时间内的平均运动快慢.平均速度跟时间对应.
瞬时速度:是指物体在运动过程中经过某一点或某一时间的运动快慢.它精确地描述了物体在某一点或某一时刻的运动快慢.瞬时速度跟时刻对应.
速度变化快慢的描述——加速度a:在变速运动中,物体速度变化跟所用时间的比.即a==,在国际单位制中的单位为m/s2,它是一个矢量,其方向就是速度变化的方向.
图像描述:①位移图像(s-t):表示物体运动过程中位移随时间变化关系的图像.在位移图像中,横坐标表示时间t,纵坐标表示
位移s .如图1中,水平直线a 表示物体
在离原点s1处静止不动;倾斜直线b表示
物体从原点开始以速度v=tgθ做匀速直线
运动;直线c表示物体从离原点s0处开始
以速度v=tgα做匀速直线运动;直线d表
示物体从离原点s2处开始以速度v=tgβ向
原点方向做匀速直线运动,t0时刻到达原点;
曲线e表示物体做变速运动;直线f在位移
图像中无意义.
速度图像(v-t):表示物体在运动过程中速度随时间变化关系的图像,速度图像中纵坐标表示物体运动的速度,横坐标表示物体
运动的时间.如图2所示,直线a表示物体
以速度v1做匀速直线运动;倾斜直线b表示
物体做初速度为0,加速度为a=tgθ的匀加
速直线运动;直线c表示物体以初速度v1,加
速度a=tgα做匀加速直线运动;直线d表
示物体以初速度v2,加速度a=tgβ做匀减速
直线运动,t0时刻速度达到0;曲线e表示物
体做变速运动;直线f在速度图像中无意义.
两种直线运动:
匀速直线运动:
物体做直线运动,如果在任何相等的时间内经过和位移都相等,则这个物体的运动就叫做匀速直线运动.
匀速直线运动的特征:速度的大小和方向都恒定不变(v = =恒量),加速度为零(a=0).
匀变速直线运动:
物体做直线运动,如果在任何相等的时间内速度的变化都相等,则这个物体的运动就叫做匀变速直线运动.
匀变速直线运动的特征:速度的大小随时间变化,加速度的大小和方向都不变
(a = = = 恒量).
匀变速直线运动的规律:如果物体的初速度为v0,t秒的速度为vt,经过的位移为s,加速度为a,则
vt=v0+at s = v0t+at2 vt2-v02 = 2as = = v
v=≠v
当初速度为0 时,vt=at s = at2 vt2 = 2as
推论:A.初速度为0的匀加速直线运动的物体的速度与时间成正比,即v1:v2=t1:t2
B. 初速度为0的匀加速直线运动的物体的位移与时间的平方成正比,即s1:s2=t12:t22
C. 初速度为0的匀变速直线运动的物体在连续相同的时间内位移之比为奇数比,即s1:s2:s3=1:3:5
D.匀变速直线运动的物体在连续相邻相同的时间间隔内位移之差为常数,刚好等于加速度和时间间隔平方和乘积,即
E.初速度为0的匀加速直线运动的物体经历连续相同的位移所需时间之比为1:
(-1):(-):……
F.将匀减速直线运动等效地看成反向的初速度为0的匀加速直线运动,有时对解题委方便.
④自由落体运动:不计空气阻力,物体只受重力以初速度为0开始从某一高度自由下落的运动.其特征为:v0=o, a = g,是初速度为0,加速度为g的匀加速直线运动.其规律为:vt = gt h = gt2 vt2 = 2gh
竖直上抛运动:不计空气阻力,物体只受重力以一定的初速沿竖直向上的方向抛出,物体所做的运动叫做竖直上抛运动.其特征为:v0≠0,a=g,是初速度不为0的匀变速直线运动.其规律为:vt=v0-gt h=v0t-gt2 vt2-v02=-2gh 上升的最大高度为hm= ,上升时间和下落时间相等,等于.
竖直上抛运动可分为两段处理,上升过程看成是匀减速直线运动,下落过程看成是自由落体运动.
第三章牛顿运动定律
牛顿第一定律
牛顿第一定律:一切物体总保持匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止.
牛顿第一定律说明:①一切物体在不受力时总是保持匀速直线运动或静止状态是指物体;②当有外力作用在物体上时,物体的运动状态就会改变,即从静止到运动或从运动到静止,或从某一速度到另一速度,因此,力是改变物体运动状态的原因;③改变运动状态,即是改变速度,所以运动状态的改变就是速度的改变.
惯性:①惯性是物体保持静止或匀速直线运动的性质.由于一切物体在不受力时都保持静止或匀速直线运动,所以惯性是一切物体都有具有的.②惯性只跟物体的质量有关,跟物体的运动与否,速度大小无关.物体的质量越大惯性越大,所以质量是物体惯性大小的量度.
牛顿第二定律:
内容:物体的加速度,跟物体所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟外力的合力方向一致.其数学表达式为∑F=ma .
应用:①力学单位单位制:基本单位:长度:m 质量:kg 时间:s
导出单位:根据基本单位导出的单位.如:根据v=s/t,速度的单位为m/s,加速度的单位为m/s2 力的单位为:N,1N=1kg?m/s
②利用牛顿第二定律解题的类型及步骤:
已知受力求运动:a.利用隔离法对物体进行受力分析;b.求出合力;c.根据牛顿第二定律求出加速度;d.根据匀变速直线运动的规律求其它运动量.
已知运动求力:a.根据匀变速直线运动规律求出加速度;b.根据牛顿第二定律求出加速度;c.作物体的受力分析图;d.根据合力与分力的关系求出其它力.
超重和失重:
超重:当物体加速上升或减速下降时,物体对支持物的压力或对悬挂物的拉力大于物体所受重力的现象.即
N(或T)=mg + ma.
失重:当物体加速下降或减速上升时物体对支持物的压力或对悬挂物的拉力小于物体所受重力的现象.即
N(或T)=mg - ma.
惯性系和非惯性系,牛顿运动定律的适用范围:
惯性系和非惯性系:能使牛顿运动定律成立的参考系.不能使牛顿运动定律成立的参考系.在惯性系中可以直接运用牛顿第二定律进行计算,而在非惯性系中为了使牛顿第二定律成立,必须加一个假想的惯性力,F=-ma,其方向与非惯性系的加速度的方向相反.
牛顿运动定律的适用范围:牛顿运动定律只适用于宏观物体的低速问题,而不适用于微观粒子和高速运动的物体.
3.典型应用
例题1一木箱装货物后质量为5kg,木箱与地面间的动摩擦因素为0.2,某人用200N的与水平面成300角的斜向下方的力拉木箱使之从静止开始运动,g取10m/s2.求:①木箱的加速度;②第2秒末木箱的速度.
解:①作受力分析图如图示2-3所示
②求水平方向的合力:F舍=Fcos300-f
而f=μ(mg+Fsin300)
③根据牛顿第二定律a===1.12(m/s2)
④v2=at=1.12х2=2.24(m/s)
答:木箱的加速度为1.12m/s2,第2秒末木箱的速度为2.24m/s.
例题2以30m/s的初速度竖直向上抛出一个质量为100g的物体,2s后到达最大高度,空气阻力始终不变,g取10m/s2.问:①运动中空气对物体的阻力大小是多少 ②物体落回原地时的速度有多大
解:①根据匀变速直线运动的规律得上升过程中物体的加速度为a1===-15m/s2
②作受力图如图2-4所示
③根据牛顿第二定律得 -(f+mg)=ma1
所以 f=-m(g+a)=0.5N
④物体抛出后上升的最大高度为h=-v02/2a1=30m,
根据牛顿第二定律:下落过程中物体的加速度为
a2=-(mg-f)/m =-5m/s2(负号表示方向向下)
由匀变速度直线运动的规律得 v2=2a2(-h)
故v=-=-17.3(m/s) (负号表示方向向下)
答:运动中空气对物体的阻力为0.5N,物体落回原地时的速度是17.3m/s.
牛顿第三定律
内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,同时出现同时消失,作用在不同的两个物体上.
2.作用力和反作用力与平衡力的联系和区别:联系:A.大小相等,方向相反,在一条直线上.
B.区别:作用力和反作用一定是作用在不同的两个物体上,一定是同一种性质的力;而平衡力只作用在一个物体上,且不一定是同一种性质的力.
第四章物体的平衡
一.共点力作用下的物体平衡(平动平衡)
1.概念:①共点力:当物体受几个力作用时,如果这几个力的作用线的延长线交于一点,则这几个力称为共点力.
②(平动)平衡:如果物体保持静止或匀速直线运动状态,则称这个物体平衡(这里指的是平动平衡).
2.共点力作用下的物体的平衡条件:
在共点力作用下的物体的平衡条件是物体所受外力的合力为零.即∑F=0(或F合=0)
推论1:当物体受到几个共点力的作用而平衡时,其中的任一个力必定与余下的其它力的合力等大反向;
推论2:当物体受到几个共点力的作用而平衡时,这些力在任一方向上的合力必为零;
推论3:当物体受到几个共点力的作用而平衡时,利用正交分解法将这些力分解,则必有∑Fx=0,∑Fy=0.
推论4:三个共点力作用的物体平衡时,这三个力必处于一个平面内,且三力首尾顺次相连,自成封闭的三角形,且每个力与所对角的正弦值成正比.
3.用共点力的平衡条件解题的步骤:
①确定研究对象;
②用隔离法作物体的受力分析,并画出受力图;
③对于受力简单的物体,可直接利用平衡条件∑F=0列出方程,对于较复杂的可先将力用正交分解法进行分解,然后用∑Fx=0,∑Fy=0列出方程组.
④求解方程,必要时还要对解进行讨论.
4.应用举例:
①利用平衡条件进行受力分析
如图4-1所示一根细绳子挂着一个小球小球与粗糙的斜面
接触,细线竖直,则小球与斜面间( ).
A.一定存在摩擦力;B.一定存在弹力;C.若有弹力必有摩擦力;
D.一定有弹力,但不一定有摩擦力.
答案:C
②二力平衡问题
质量为50g的磁铁吸紧在竖直放置的铁板上,它们间的动摩擦因数为0.3.要使磁铁匀速下滑,需竖直向下加1.5N的拉力.那么,如果要使磁铁匀速向上滑动,应竖直向上用多大的力 答案:2.5N.
③三力平衡问题
④多力平衡问题
二.有固定转轴物体的平衡条件:
1.基本概念:①转动平衡:一个有固定转轴的物体,在力的作用下,如果保持静止或匀速转动状态,则该物体处于转动平衡状态.
②力臂:从转动轴到力的作用线的垂直距离.
③力矩:力和力臂的乘积,力矩的作用效果是使物体的转动状态发生改变.M=FL 单位是N?m 当力矩的作用效果是使物体沿逆时针转动时取为正值;当力矩的作用效果是使物体沿顺时针转动时取为负值.
2.有固定转轴物体的平衡条件:
有固定转轴物体的平衡条件是力矩的代数和为零,即∑M=0或M1+M2+M3+……=0
3.力矩平衡条件的应用及解题步骤:
①确定研究对象,选定转轴,对物体进行受力分析;
②用M=FL求出各力的力矩,注意区分正负力矩;
③根据有固定转轴物体的平衡条件列出平衡方程或方程组.(注意:当物体既处于平动平衡状态,又处于转动平衡状态时,还可以利用平动平衡条件列出方程,与转动平衡方程一起解出未知量.)
④解方程,求出未知量.

抛体运动 知识要点
一、匀变速直线运动的特征和规律:
? 匀变速直线运动:加速度是一个恒量、且与速度在同一直线上。
 基本公式:   、    、 
 (只适用于匀变速直线运动)。
? 当v0=0  、a=g (自由落体运动),有                                     
vt=gt 、   、  、    。
?当V0竖直向上、 a= -g (竖直上抛运动)。
注意: (1)上升过程是匀减速直线运动,下落过程是匀加速直线运动。
(2)全过程加速度大小是g,方向竖直向下,全过程是匀变速直线运动
(3)从抛出到落回抛出点的时间:t总= 2V0/g =2 t上=2 t 下 
       (4)上升的最大高度(相对抛出点):H=v02/2g
(5)*上升、下落经过同一位置时的加速度相同,而速度等值反向
   (6)*上升、下落经过同一段位移的时间相等。
(7)*用全程法分析求解时:取竖直向上方向为正方向,S>0表示此时刻质点的位置在抛出点的上方;S<0表示质点位置在抛出点的下方。 vt >0表示方向向上; vt <0表示方向向下。在最高点 a=-g   v=0。                    
二、运动的合成和分解:
1.两个匀速直线运动的物体的合运动是___________________运动。一般来说,两个直线运动的合运动并不一定是____________运动,也可能是_____________运动。合运动和分运动进行的时间是__________的。
2.由于位移、速度和加速度都是______量,它们的合成和分解都按照_________法则。
三、曲线运动:
    曲线运动中质点的速度沿____________方向,曲线运动中,物体的速度方向随时间而变化,所以曲线运动是一种__________运动,所受的合力一定      .必具有_________。物体做曲线运动的条件是________            ________ 。
四、平抛运动(设初速度为v0):
1.特征:初速度方向____________,加速度____________。是一种     。。。
2.性质和规律:
水平方向:做______________运动, vX=v0 、x=v0t 。             
竖直方向:做______________运动, vy=gt=       、y=gt2/2=      。
合速度:V=                  ,合位移S=                  。
3.平抛运动的飞行时间由                 决定,与          无关。
五、斜抛运动(设初速度为v0,抛射角为θ):
1.特征:初速度方向_______________,加速度________________。
2.性质和规律:
水平方向:做______________运动, vX=          、x=       
竖直方向:做______________运动, vy=          、y=            。
  合速度:V=                  ,合位移S=                  。
3.在最高点 a=-g   vy=0
最大高度:H=            ,射程S=             飞行时间T=          
圆周运动 知识要点
一、匀速圆周运动的基本概念和公式:
1.速度(线速度):
定义:文字表述____________________________________;定义式为_________;
速度的其他计算公式:v=2rπ/T=2πRn、n 是转速。
2.角速度:
定义:文字表述______________________________________;定义式________;
角速度的其他计算公式:_________________________________。
线速度与角速度的关系:___________________。
3.向心加速度:计算公式: a=v2/r=ω2r =           .
注意:(1)上述计算向心加速度的两个公式也适用于计算变速圆周运动的向心加速度,计算时必须用该点的线速度(或角速度)的瞬时值;
     (2)v一定时,a与r成反比; 一定时,a与r成正比。
4.向心力:
计算公式:F=mv2/r =           =             =          
(1)匀速圆周运动速度大小不变,方向时刻改变,是变速运动;加速度大小不变方向时刻改变,是一种变加速运动。匀速圆周运动的速度、加速度和所受向心力都是变量,但角速度是恒量;
(2)线速度、角速度和周期都表示匀速圆周运动的快慢;运动越快,则线速度越     、角速度越     、周期越     。
(3)匀速圆周运动时物体所受合外力必须指向圆心,作为使物体产生向心加速度的向心力。如果物体做变速圆周运动,合外力的沿半径的分力是此时的向心力,它改变速度的方向;合外力的切向分力则改变速度的大小。
二、圆周运动题型分析:
在水平面上的匀速圆周运动:知道飞机绕水平圆周盘旋、自行车或汽车在水平面内转弯、火车转弯、*圆锥摆等问题中物体所受合外力作为向心力。汽车过拱桥、细绳拉住物体在竖直平面内作圆周运动(不是匀速)时,沿半径方向的合力提供向心力,在最高点的合力向下,在最低点的合力向上。
万有引力 知识要点
一、万有引力定律:      F=               
适用条件:两个质点间(质量均匀分布的球可以看作质量在球心的质点)        二、万有引力定律的应用:(天体质量M, 天体半径R, 天体表面重力加速度g )
1.万有引力=向心力  (一个天体绕另一个天体作圆周运动时,r=R+h )
           G    
    中心天体的质量: M=4π2r3/GT2
人造地球卫星的作圆周运动速度大小计算: 
2.重力=万有引力
   地面物体的重力加速度:mg = G         g = G ≈9.8m/s2        
高空物体的重力加速度:mg = G     g = G <9.8m/s2
3.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的.
 由mg = m 或由  = =7.9km/s    
7.9×103m/s称为第一宇宙速度;11.2×103m/s称为第二宇宙速度;16.7×103m/s称为第三宇宙速度。
4.通讯卫星(又称同步卫星)相对于地面静止不动,其圆轨道位于赤道上空,其周期与地球自转周期相同(一天),其轨道半径是一个定值。
5.卫星在发射时加速升高和返回减速的过程中,均发生超重现象,进入圆周运动轨道后,发生完全失重现象,一切在地面依靠重力才能完成的实验都无法做。
机械能和能源 知识要点
一、功和功率:
1.功的计算公式: W=             (条件:                      )
2.做功的两个不可缺少的因素:(1)   ;(2)                      ;
功是标量、是过程量。功的大小反映了力在使物体发生一段位移的过程中的总效果;同时功又是物理过程中能量转移或转化的量度。
注意:当 = π时,W=0。例如:线吊小球做圆周运动时,线的拉力不做功;当π/2< α≤π时,力对物体做负功,也说成物体克服这个力做了功(取正值)
3.功率:定义式                
物理意义:___________________________;单位及换算:1kW=       W
其他计算公式:平均功率_____________________;
瞬时功率_____________________。
额定功率是发动机正常工作时最大功率;实际输出功率小于或等于额定功率。
二、动能和动能定理:
1.动能:大小____________决定因数:                _______。
注意:动能是标量,动能没有方向,不要把速度的方向误认为是动能的方向。动能是状态量,是瞬时量,与一个时刻或位置相对应。
2.动能定理:
文字表述:____________________________________________________;
公式表示: W=EK2-EK 1 =mv22/2-mv12/2
讨论:当W>0时, EK2 > EK1,动能增大;
当W<0时, EK2 < EK1  动能减小;当W=0时 EK2 = EK1  动能不变。
注意:(1)功和能是两个不同的概念,但相互之间有密切的联系,这种联系体现于动能定理上,外力对物体做的总功等于物体动能的增加。(2)外力对物体所做的总功等于物体受到的所有外力的功(包括各段的运动过程)的代数和。(3)适用对象:适用于单个物体。
三、重力势能和弹性势能:
1,重力势能:
(1)重力做功的特点:重力对物体做的功只跟                  有关,而跟物体的运动的路径无关。
(2)重力势能的定义和定义式:                                         。
性质:重力势能是标量、状态量、相对量。当物体位于所选择的参考平面(零势面)的上方(下方)时,重力势能为正直(负值)。但重力势能的差值与参考平面的选择无关。重力势能属于物体和地球组成的系统。
(3)重力势能与重力做功的联系:重力做的正功等于物体的重力势能的减小,即WG=mgh1—mgh2;如重力做的负功(多少)等于重力势能增加。
2.弹性势能:物体由于发生了弹性形变,而具有的能量,其大小与物体的     .及             有关。弹性势能的变化与弹力的功的关系是      。
四、机械能守恒定律:
1.内容:__________________________________________        _____________
________________________________________________;
2.条件:只有重力(弹力)做功,其他力不做功。这里的弹力指研究弹性势能的物体(如弹簧)的弹力,不是指通常的拉力、推力。不能误认为“只受重力(弹力)作用。
3.表达式:E2=E1    或                                                 
注意:(1)研究对象是系统;(2)分清初、末状态。
4.功和能的关系
重力的功?量度?重力势能的变化,    弹力的功?量度?弹性势能的变化
合外力的功?量度?动能的变化(注意:合外力包括重力合弹力)
除重力和弹力之外的外力的功?量度?机械能的变化
五、能量守恒定律和能源:
1. 能的转化和守恒定律:                                                
                                                                       
                                                                    。
2.第一类永动机是指                                                   
3.第二类永动机是指                                                  
4.一次能源有                                                 。
   二次能源有                                                 。
其中属于可再生能源有                                                 属于不可再生的能源有                                               
5.未来的能源有                                                       。
经典力学与物理学的革命  知识要点
1.经典力学的建立
经典力学是描述宏观物体低速运动规律的力学体系。17、18世纪建立,也叫牛顿力学(因为牛顿建立了普遍适用的力学规律——牛顿运动定律和万有引力定律)或古典力学。对经典力学的建立作出重要贡献的有:      、      、
      、       、        、       等。
2.经典力学的局限性: 只适用于                                        
3.经典时空观(三个结论):                                           
4.相对论时空观:同时是相对的;空间距离是相对的
狭义相对论——爱因斯坦创立。重要结论有:运动的时钟   ;运动的尺子   ,运动的物体的质量随速度的增加而     。
5.经典物理学能量观——一切自然过程(包括物质、能量)都是    
普朗克能量量子化——物质发射(或吸收)能量时,能量是        
量子说:普朗克提出,能够很好解释                          规律。
6.光子说:认为E=hν  爱因斯坦提出,能够很好解释          规律。
   光的本性:光具有波粒二象性(光的干涉、衍射和偏振等说明光具有     ,光电效应说明光具有       )
物理基础知识练习题
1a.两个质量不同的物体,放在不同的水平面上,用相同的水平拉力分别使它们运动相同的位移,则拉力对物体做的功            大。(填“一样”或“不一样”)
1b.放在光滑水平面上的物体,在水平拉力F1作用下,移动位移S;如果拉力改为与水平方向成300的力F2,移动的位移为2S,已知F1和F2所做的功相等,则F1与F2的大小之比为         。
1c.如图所示,光滑斜面的倾角为θ,斜面高度为h,底边长为L。用水平恒力F将质量为m的物体从斜面底端推到斜面顶端时,推力做功为W1=            ,重力做功为W2=           ,斜面对物体的弹力做功为W3=           。
2a.汽车在水平的公路上,沿直线匀速行驶,当速度为18m/s时,其输出功率为72kW,汽车所受到的阻力是            N。
2b.质量是2kg的物体,从足够高处自由落下,经过5s重力对物体做功的平均功率是______W,瞬时功率是______W。(取g=10m/s2)
2c.质量为5.0×103 kg的汽车,在水平路面上由静止开始做加速度为2.0m/s2的匀加速直线运动,所受阻力是1.0×103N,汽车在起动后第1s末牵引力的瞬时功率是             。
3a.在粗糙水平面上,质量为m的物体在水平恒力F的作用下,运动位移S,物体与地面间的动摩擦因数为μ,则运动位移S时物体的动能为           。
3b.斜面的倾角为θ,斜面高度为h,物体与斜面的动摩擦因数为μ。物体从斜面顶端由静止滑到底端的动能为           。
3c.有一质量为m的小球,以初速度V0竖直上抛后落回原处,如不计空气阻力,小球的速度变化了_________,小球的动能变化了__________.
3d.水平面上的质量为m的物体,在一个水平恒力F作用下,由静止开始做匀加速直线运动,经过位移S后撤去外力,又经过位移3S物体停了下来。则物体受到的阻力为         。
4a.重力对物体做10J的功,物体重力势能      了      J. 重力对物体做-10J的功,物体重力势能      了      J。
4b.单摆的摆球从最大位移处向最低位置运动的过程中,重力做       ,重力势能       ,摆线的拉力         。
5a.以V0的初速度竖直上抛一个小球,忽略空气阻力,则上升的最大高度为      ,上升高度h时的速度为          。
5b.如图,长为L的细绳一端固定,另一端连接一质量为m的小球,现将球拉至与水平方向成30°角的位置释放小球(绳刚好拉直),则小球摆至最低点时的速度大小为           ,绳子的拉力为           .
6a.一质点做匀速圆周运动过程中,角速度       ,周期        ,动能       ,动量      ,向心力      ,向心加速度       。(填变化与否)
6b.一质点做匀速圆周运动,在12s内运动的路程为24m,则质点的线速度大小为        。
6c.一质点做匀速圆周运动,在3s内半径转过角度为1200,则质点的角速度为        ,周期为      。
6d.一质点做匀速圆周运动的半径为r,周期为T,则质点的线速度大小为       ,角速度为          ,频率为       。
6e.已知一质量为m的质点做匀速圆周运动的半径为r,周期为T,则质点的向心力为F=          。
7a.如左图为光滑的半球形碗,质量为m的小球从A点由静止滑下,则小球在最低点B时的速度为    ,向心加速度为       ,向心力为       ,球对碗底的压力为        。
7b.如下中左图,一根长为L的细线一端固定,一端系一质量为m的小球在竖直平面内做圆周运动,则小球在最高点时的最小速度为        ,绳子的最小拉力为       ;*在最低点时小球的最小速度为        ,*绳子的最小拉力为           。
7c*.如下中右图,一长为L的轻杆一端系一质量为m的小球在竖直平面内做圆周运动,则小球在最高点时的最小速度为        ,轻杆对小球的作用力最小为       ;在最低点时小球的最小速度为        ,轻杆对小球的作用力最小为        。 

 


7d.如上右图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点。左轮的半径为2r。c点在左轮上,到左轮中心的距离为r。a点和b点分别位于右轮和左轮的边缘上。若在传动过程中,皮带不打滑。则a、b、c三点的线速度大小之比为           ;a、b、c三点的向心加速度大小之为           。
8a。两颗人造地球卫星的质量分别为m和2m,轨道半径分别为4 r和r,则地球对两颗人造卫星的万有引力之比为       ,向心加速度之比为       ,线速度之比为         ,周期之比为        。
8b。已知海王星和地球的质量比M:m=16:1,它们的半径比R:r= 4:1,求:
(1)海王星和地球的第一宇宙速度之比        。
(2)海王星和地球表面的重力加速度之比         。
8b。如果某恒星有一颗卫星,此卫星沿非常靠近恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度为        (万有引力恒量为G)
物理定理、定律、公式表
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(RARV)1/2]
选用电路条件RxRx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。
十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料
十三、电磁感应
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。
十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
超级全面的物理公式!!!很有用的说~~~(按照咱们的物理课程顺序总结的)
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(3)干涉与衍射是波特有的;
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)选用电路条件Rx>>RA [或Rx>(RARV)1/2]
选用电路条件Rx<12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B); {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
十三、电磁感应
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
十五、电磁振荡和电磁波
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
注:
(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;
(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;
十六、光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
注:
(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;
十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)
1.两种学说:微粒说(牛顿)、波动说(惠更斯)
2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距 { :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}
3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)
4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4〔见第三册P25〕
5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播
6.光的偏振:光的偏振现象说明光是横波
7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用
8.光子说,一个光子的能量E=hν {h:普朗克常量=6.63×10-34J.s,ν:光的频率}
9.爱因斯坦光电效应方程:mVm2/2=hν-W {mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}
注:
(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;
(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P50〕/光电效应的规律光子说〔见第三册P41〕/光电管及其应用/光的波粒二象性〔见第三册P45〕/激光〔见第三册P35〕/物质波〔见第三册P51〕。

十八、原子和原子核
1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)
2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)
3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}
4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}
5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕
6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}
7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。
注:
(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;
(2)熟记常见粒子的质量数和电荷数;
(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;
(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。(完)

左手定则:
左手定则(安培定则):已知电流方向和磁感线方向,判断通电导体在磁场中受力方向,如电动机。

伸开左手,让磁感线穿入手心(手心对准N极,手背对准S极), 四指指向电流方向 ,那么大拇指的方向就是导体受力方向。
其原理是:
当你把磁铁的磁感线和电流的磁感线都画出来的时候,两种磁感线交织在一起,按照向量加法,磁铁和电流的磁感线方向相同的地方,磁感线变得密集;方向相反的地方,磁感线变得稀疏。磁感线有一个特性就是,每一条磁感线互相排斥!磁感线密集的地方“压力大”,磁感线稀疏的地方“压力小”。于是电流两侧的压力不同,把电流压向一边。拇指的方向就是这个压力的方向。

右手定则:
确定导体切割磁感线运动时在导体中产生的感应电流方向的定则。(发电机)
右手定则的内容是:伸开右手,使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向感应电流的方向。

 一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as

3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t

7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差

9.主要物理量及单位:初速(Vo):m/s
加速度(a):m/s^2 末速度(Vt):m/s

时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h

注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2) 自由落体

1.初速度Vo=0
2.末速度Vt=gt

3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3) 竖直上抛

1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )

3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。


二、质点的运动(2)----曲线运动 万有引力

1)平抛运动

1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt

3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2

5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2

合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo

7.合位移S=(Sx^2+ Sy^2)1/2 ,

位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R

5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR

7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)

8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)

周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s

角速度(ω):rad/s 向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

3)万有引力

1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)

2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它们的连线上

3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)

4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2

5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s

6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。

机械能
1.功
(1)做功的两个条件: 作用在物体上的力.
物体在里的方向上通过的距离.

(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)
1J=1N*m
当 0<= a <派/2 w>0 F做正功 F是动力
当 a=派/2 w=0 (cos派/2=0) F不作功
当 派/2<= a <派 W<0 F做负功 F是阻力

(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa

2.功率
(1) 定义:功跟完成这些功所用时间的比值.
P=W/t 功率是标量 功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s 1000w=1kw

(2) 功率的另一个表达式: P=Fvcosa
当F与v方向相同时, P=Fv. (此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率: 当v为平均速度时
2)瞬时功率: 当v为t时刻的瞬时速度

(3) 额定功率: 指机器正常工作时最大输出功率
实际功率: 指机器在实际工作中的输出功率
正常工作时: 实际功率≤额定功率

(4) 机车运动问题(前提:阻力f恒定)
P=Fv F=ma+f (由牛顿第二定律得)
汽车启动有两种模式

1) 汽车以恒定功率启动 (a在减小,一直到0)
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值

2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定 F不变(F=ma+f) V在增加 P实逐渐增加最大
此时的P为额定功率 即P一定
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值

3.功和能
(1) 功和能的关系: 做功的过程就是能量转化的过程
功是能量转化的量度

(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别.

4.动能.动能定理
(1) 动能定义:物体由于运动而具有的能量. 用Ek表示
表达式 Ek=1/2mv^2 能是标量 也是过程量
单位:焦耳(J) 1kg*m^2/s^2 = 1J

(2) 动能定理内容:合外力做的功等于物体动能的变化
表达式 W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功

5.重力势能
(1) 定义:物体由于被举高而具有的能量. 用Ep表示
表达式 Ep=mgh 是标量 单位:焦耳(J)
(2) 重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度

(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关

(4) 弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度

6.机械能守恒定律
(1) 机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep 是标量 也具有相对性
机械能的变化,等于非重力做功 (比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化

(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功

 一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
动能保持不变,向心力不做功,但动量不断改变。

 第一章力
力的概念
力是一个物体对另一个物体的作用,其中一个物体为施力物体,另一个物体为受力物体.力不能离开物体而独立存在,力的作用效果是使物体发生形变和使物体产生加速度.
力的单位:在国际单位制中力的单位是牛顿,符号为N.
力的方向:力是有大小和方向的,是矢量.
力的三要素:大小,方向和作用点.
力的图示:力可以用一有表示大小的刻度和表示方向的箭头的有向线段来表示.如下图所示.
6.力的测量:用弹簧秤测量.
力的种类:
重力:重力是由于地球的吸引而使物体产生的力(注:不能说重力就是地球对物体的吸引力).
重力的大小:重力大小等于mg,g是常数,等于9.8N/Kg.
重力的方向:总是竖直向下.
重心:重力总是作用在物体的各个点上,但为了研究问题简单,我们认为一个物体的重力集中作用在物体的一点上,这一点称为物体的重心.质量分布均匀的规则的物体的重心在物体的几何中心.其它物体的重心可用悬挂法求出重心位置.
弹力:当相互接触的物体发生形变时,发生形变的物体对使它发生形变的物体产生的力,叫做弹力.
弹力的大小:F=kx(胡克定律),k为弹簧的倔强系数.X为形变量.
弹力的方向:弹力的方向总是与形变的方向相反,且垂直于接触面.
摩擦力:
滑动摩擦力:相互接触的物体,当它们有相对滑动时,在它们的接触面上产生的阻碍它们做相对运动的力,叫做滑动摩擦力.
滑动摩擦力的大小:f= N, 为滑动摩擦系数,N为压力.滑动摩擦系数与物体的材料和物体表面的光滑程度有关.
滑动摩擦力的方向:总是与相对运动的方向相反.
静摩擦力:相互相互接触的物体,当它们有相对滑动的趋势,但又保持相对静止时在它们的接触面上产生的阻碍它们做相对运动的力,叫做静摩擦力.
静摩擦力的大小:总是与跟它反方向的外力的大小相等.
静摩擦力的方向:总是与相对滑动趋势的方向相反.
物体受力分析:
物体受力分析的步骤:首先分析重力,其次分析是否的形变从而分析是否有弹力,第三,分析是否有相对运动或相对运动的趋势,从而分析是否有摩擦力.
物体受力时,只要物体在地球表面或地球附近,就一定有重力,物体间有相互接触,不一定有弹力,也不一定有摩擦力,有弹力不一定有摩擦力,但有摩擦力一定有弹力.
力的运算:
合力,分力,力的合成,力的分解的概念:
当一个力的作用效果与其它几个力的作用效果
相同时,这一个力就叫做那几个力的合力,反
过来那几个力叫做这一个力的分力.已知合力
求分力的过程叫做力的分解;已知分力求合力的过程叫做力的合成.
力的合成:
图解法:A.平形四边形定则:
如右图1所示.
B.三角形定则:利用三角形定则求
合力台下图2所示.
C.多边形定则:如图3所示,将F1,F2,F3,……F6六
个力依次首尾相连,最后将
第一个力的起点到最后一个力的终点的有向线段,即为
合力.多边形定则适用于多力合成.
计算法:A.当分力在同一直线上且方向相同时,直接
相加.即F合=F1+F2
B.当分力在同一直线上且方向相反时,直接用大的力减去
小的力,且合力的方向与大力的方向相同.即F合=F1-F2 C.当分力互相垂直时,可以用勾股定理求出合力,即F= tgθ=
d.特殊情况的力的合成:如果两个分力是大小相等的力,且两分力的夹角为特殊角时,可以用解棱形的办法求解.
3.力的分解:在进行力的分解时,只能求解:已知合力及两个分力的方向,求两分力的大小;已知合力及两分力的方向,求两分力的大小.
①图解法:用力的合成的平行四边形定则(或三角形定则)的逆过程求解.
正交分解法:适用于将一个已知力分解在互相垂直的两个方向上.如图4所示.
力的正交分解的典型例子:
如图5所示,质量物体为m的物体位于水平面
上,受到一个与水平面成θ角的斜向上方的力作
用而保持向右匀速直线运动,则有
N=mg+Fsinθ f= (mg+Fcosθ)
如图6所示,一物体质量为m位于顷角为θ的斜
面上,保持静止,则有
f=mgsinθ N=mgcosθ
C.如图7所示,一根细绳水平拉住
一个电灯,电线与竖直线的夹角为
θ,电灯保持静止.则有:
T1=T2sinθ, T2cosθ=mg
第二章 直线运动
运动的基本概念:
机械运动:一个物体相对于别的物体位置的变动.
参考系:为了研究物体的运动,首先假定为不动的物体或物体系.同一物体的运动,选择不同的参考系,描述的结果可能不同.
质点:用来代替物体的有质量而无大小的点.
位移(s):从初始位置到末位置的有向线段.是描述物体位置变化大小的物理量,它是矢量.
路程:物体运动轨迹的长度,它是标量.
时间和时刻:时间是一段,而时刻是一点.
直线运动:物体沿着直线的运动:
曲线运动:物体沿着曲线的运动.
注意:①只有当物体上各点的运动情况都相同或物体上有运动情况不同的点,但不影响物体的整体运动时,才能把物体看成质点.
②位移与路程的区别与联系:位移是矢量,而路程是标量,只有在单方向直线运动中,路程才等于位移的大小.
运动的描述:
物理量描述:
位置变动的描述——位移s.
运动快慢的描述——速度v:物体的位移跟发生这段位移所用时间的比.即v=,在国际单位 制中速度的单位是m/s,非国际单位还有cm/s,km/h等.
平均速度:=,它粗略地描述了物体的平均运动快慢,是物体在一段位移或一段时间内的平均运动快慢.平均速度跟时间对应.
瞬时速度:是指物体在运动过程中经过某一点或某一时间的运动快慢.它精确地描述了物体在某一点或某一时刻的运动快慢.瞬时速度跟时刻对应.
速度变化快慢的描述——加速度a:在变速运动中,物体速度变化跟所用时间的比.即a==,在国际单位制中的单位为m/s2,它是一个矢量,其方向就是速度变化的方向.
图像描述:①位移图像(s-t):表示物体运动过程中位移随时间变化关系的图像.在位移图像中,横坐标表示时间t,纵坐标表示
位移s .如图1中,水平直线a 表示物体
在离原点s1处静止不动;倾斜直线b表示
物体从原点开始以速度v=tgθ做匀速直线
运动;直线c表示物体从离原点s0处开始
以速度v=tgα做匀速直线运动;直线d表
示物体从离原点s2处开始以速度v=tgβ向
原点方向做匀速直线运动,t0时刻到达原点;
曲线e表示物体做变速运动;直线f在位移
图像中无意义.
速度图像(v-t):表示物体在运动过程中速度随时间变化关系的图像,速度图像中纵坐标表示物体运动的速度,横坐标表示物体
运动的时间.如图2所示,直线a表示物体
以速度v1做匀速直线运动;倾斜直线b表示
物体做初速度为0,加速度为a=tgθ的匀加
速直线运动;直线c表示物体以初速度v1,加
速度a=tgα做匀加速直线运动;直线d表
示物体以初速度v2,加速度a=tgβ做匀减速
直线运动,t0时刻速度达到0;曲线e表示物
体做变速运动;直线f在速度图像中无意义.
两种直线运动:
匀速直线运动:
物体做直线运动,如果在任何相等的时间内经过和位移都相等,则这个物体的运动就叫做匀速直线运动.
匀速直线运动的特征:速度的大小和方向都恒定不变(v = =恒量),加速度为零(a=0).
匀变速直线运动:
物体做直线运动,如果在任何相等的时间内速度的变化都相等,则这个物体的运动就叫做匀变速直线运动.
匀变速直线运动的特征:速度的大小随时间变化,加速度的大小和方向都不变
(a = = = 恒量).
匀变速直线运动的规律:如果物体的初速度为v0,t秒的速度为vt,经过的位移为s,加速度为a,则
vt=v0+at s = v0t+at2 vt2-v02 = 2as = = v
v=≠v
当初速度为0 时,vt=at s = at2 vt2 = 2as
推论:A.初速度为0的匀加速直线运动的物体的速度与时间成正比,即v1:v2=t1:t2
B. 初速度为0的匀加速直线运动的物体的位移与时间的平方成正比,即s1:s2=t12:t22
C. 初速度为0的匀变速直线运动的物体在连续相同的时间内位移之比为奇数比,即s1:s2:s3=1:3:5
D.匀变速直线运动的物体在连续相邻相同的时间间隔内位移之差为常数,刚好等于加速度和时间间隔平方和乘积,即
E.初速度为0的匀加速直线运动的物体经历连续相同的位移所需时间之比为1:
(-1):(-):……
F.将匀减速直线运动等效地看成反向的初速度为0的匀加速直线运动,有时对解题委方便.
④自由落体运动:不计空气阻力,物体只受重力以初速度为0开始从某一高度自由下落的运动.其特征为:v0=o, a = g,是初速度为0,加速度为g的匀加速直线运动.其规律为:vt = gt h = gt2 vt2 = 2gh
竖直上抛运动:不计空气阻力,物体只受重力以一定的初速沿竖直向上的方向抛出,物体所做的运动叫做竖直上抛运动.其特征为:v0≠0,a=g,是初速度不为0的匀变速直线运动.其规律为:vt=v0-gt h=v0t-gt2 vt2-v02=-2gh 上升的最大高度为hm= ,上升时间和下落时间相等,等于.
竖直上抛运动可分为两段处理,上升过程看成是匀减速直线运动,下落过程看成是自由落体运动.
第三章牛顿运动定律
牛顿第一定律
牛顿第一定律:一切物体总保持匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止.
牛顿第一定律说明:①一切物体在不受力时总是保持匀速直线运动或静止状态是指物体;②当有外力作用在物体上时,物体的运动状态就会改变,即从静止到运动或从运动到静止,或从某一速度到另一速度,因此,力是改变物体运动状态的原因;③改变运动状态,即是改变速度,所以运动状态的改变就是速度的改变.
惯性:①惯性是物体保持静止或匀速直线运动的性质.由于一切物体在不受力时都保持静止或匀速直线运动,所以惯性是一切物体都有具有的.②惯性只跟物体的质量有关,跟物体的运动与否,速度大小无关.物体的质量越大惯性越大,所以质量是物体惯性大小的量度.
牛顿第二定律:
内容:物体的加速度,跟物体所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟外力的合力方向一致.其数学表达式为∑F=ma .
应用:①力学单位单位制:基本单位:长度:m 质量:kg 时间:s
导出单位:根据基本单位导出的单位.如:根据v=s/t,速度的单位为m/s,加速度的单位为m/s2 力的单位为:N,1N=1kg·m/s
②利用牛顿第二定律解题的类型及步骤:
已知受力求运动:a.利用隔离法对物体进行受力分析;b.求出合力;c.根据牛顿第二定律求出加速度;d.根据匀变速直线运动的规律求其它运动量.
已知运动求力:a.根据匀变速直线运动规律求出加速度;b.根据牛顿第二定律求出加速度;c.作物体的受力分析图;d.根据合力与分力的关系求出其它力.
超重和失重:
超重:当物体加速上升或减速下降时,物体对支持物的压力或对悬挂物的拉力大于物体所受重力的现象.即
N(或T)=mg + ma.
失重:当物体加速下降或减速上升时物体对支持物的压力或对悬挂物的拉力小于物体所受重力的现象.即
N(或T)=mg - ma.
惯性系和非惯性系,牛顿运动定律的适用范围:
惯性系和非惯性系:能使牛顿运动定律成立的参考系.不能使牛顿运动定律成立的参考系.在惯性系中可以直接运用牛顿第二定律进行计算,而在非惯性系中为了使牛顿第二定律成立,必须加一个假想的惯性力,F=-ma,其方向与非惯性系的加速度的方向相反.
牛顿运动定律的适用范围:牛顿运动定律只适用于宏观物体的低速问题,而不适用于微观粒子和高速运动的物体.
3.典型应用
例题1一木箱装货物后质量为5kg,木箱与地面间的动摩擦因素为0.2,某人用200N的与水平面成300角的斜向下方的力拉木箱使之从静止开始运动,g取10m/s2.求:①木箱的加速度;②第2秒末木箱的速度.
解:①作受力分析图如图示2-3所示
②求水平方向的合力:F舍=Fcos300-f
而f=μ(mg+Fsin300)
③根据牛顿第二定律a===1.12(m/s2)
④v2=at=1.12х2=2.24(m/s)
答:木箱的加速度为1.12m/s2,第2秒末木箱的速度为2.24m/s.
例题2以30m/s的初速度竖直向上抛出一个质量为100g的物体,2s后到达最大高度,空气阻力始终不变,g取10m/s2.问:①运动中空气对物体的阻力大小是多少 ②物体落回原地时的速度有多大
解:①根据匀变速直线运动的规律得上升过程中物体的加速度为a1===-15m/s2
②作受力图如图2-4所示
③根据牛顿第二定律得 -(f+mg)=ma1
所以 f=-m(g+a)=0.5N
④物体抛出后上升的最大高度为h=-v02/2a1=30m,
根据牛顿第二定律:下落过程中物体的加速度为
a2=-(mg-f)/m =-5m/s2(负号表示方向向下)
由匀变速度直线运动的规律得 v2=2a2(-h)
故v=-=-17.3(m/s) (负号表示方向向下)
答:运动中空气对物体的阻力为0.5N,物体落回原地时的速度是17.3m/s.
牛顿第三定律
内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,同时出现同时消失,作用在不同的两个物体上.
2.作用力和反作用力与平衡力的联系和区别:联系:A.大小相等,方向相反,在一条直线上.
B.区别:作用力和反作用一定是作用在不同的两个物体上,一定是同一种性质的力;而平衡力只作用在一个物体上,且不一定是同一种性质的力.
第四章物体的平衡
一.共点力作用下的物体平衡(平动平衡)
1.概念:①共点力:当物体受几个力作用时,如果这几个力的作用线的延长线交于一点,则这几个力称为共点力.
②(平动)平衡:如果物体保持静止或匀速直线运动状态,则称这个物体平衡(这里指的是平动平衡).
2.共点力作用下的物体的平衡条件:
在共点力作用下的物体的平衡条件是物体所受外力的合力为零.即∑F=0(或F合=0)
推论1:当物体受到几个共点力的作用而平衡时,其中的任一个力必定与余下的其它力的合力等大反向;
推论2:当物体受到几个共点力的作用而平衡时,这些力在任一方向上的合力必为零;
推论3:当物体受到几个共点力的作用而平衡时,利用正交分解法将这些力分解,则必有∑Fx=0,∑Fy=0.
推论4:三个共点力作用的物体平衡时,这三个力必处于一个平面内,且三力首尾顺次相连,自成封闭的三角形,且每个力与所对角的正弦值成正比.
3.用共点力的平衡条件解题的步骤:
①确定研究对象;
②用隔离法作物体的受力分析,并画出受力图;
③对于受力简单的物体,可直接利用平衡条件∑F=0列出方程,对于较复杂的可先将力用正交分解法进行分解,然后用∑Fx=0,∑Fy=0列出方程组.
④求解方程,必要时还要对解进行讨论.
4.应用举例:
①利用平衡条件进行受力分析
如图4-1所示一根细绳子挂着一个小球小球与粗糙的斜面
接触,细线竖直,则小球与斜面间( ).
A.一定存在摩擦力;B.一定存在弹力;C.若有弹力必有摩擦力;
D.一定有弹力,但不一定有摩擦力.
答案:C
②二力平衡问题
质量为50g的磁铁吸紧在竖直放置的铁板上,它们间的动摩擦因数为0.3.要使磁铁匀速下滑,需竖直向下加1.5N的拉力.那么,如果要使磁铁匀速向上滑动,应竖直向上用多大的力 答案:2.5N.
③三力平衡问题
④多力平衡问题
二.有固定转轴物体的平衡条件:
1.基本概念:①转动平衡:一个有固定转轴的物体,在力的作用下,如果保持静止或匀速转动状态,则该物体处于转动平衡状态.
②力臂:从转动轴到力的作用线的垂直距离.
③力矩:力和力臂的乘积,力矩的作用效果是使物体的转动状态发生改变.M=FL 单位是N·m 当力矩的作用效果是使物体沿逆时针转动时取为正值;当力矩的作用效果是使物体沿顺时针转动时取为负值.
2.有固定转轴物体的平衡条件:
有固定转轴物体的平衡条件是力矩的代数和为零,即∑M=0或M1+M2+M3+……=0
3.力矩平衡条件的应用及解题步骤:
①确定研究对象,选定转轴,对物体进行受力分析;
②用M=FL求出各力的力矩,注意区分正负力矩;
③根据有固定转轴物体的平衡条件列出平衡方程或方程组.(注意:当物体既处于平动平衡状态,又处于转动平衡状态时,还可以利用平动平衡条件列出方程,与转动平衡方程一起解出未知量.)
④解方程,求出未知量.
题目
一.力 物体的平衡 知识归类
一,力的概念:力是物体________________的作用.
1,注意要点:(1)一些不接触的物体也能产生力;(2)任一个力都有受力者和施力者,力不能离开物体而存在;(3)力的作用效果:使物体发生形变或使物体运动状态改变;(4)力的单位:国际单位是_________,符号为__________-;(5)力的测量工具是_______________.
2,力的三要素分别是_________,____________,__________________.
3,力的图示:在图中必须明确:(1)作用点;(2)大小:(3)方向;(4)大小标度.
二,力学中力的分类(按力的性质分)
1,重力:
(1)重力的定义:重力是由于地球对________________而产生的.
(2)重力的大小:G=_______________;重力的方向_______________.
(3)重力的作用点:______________.质量分布均匀,外形有规则物体的重心在物体的________________中心,一些物体的中心在物体____________,也有一些物体的重心在物体__________.
(4)万有引力:物体之间相互吸引的力称为万有引力,它的大小和物体质量以及两个物体之间的距离有关,物体质量越大它们之间的万有引力就越_________,物体之间的距离越远,它们之间的万有引力就越__________.
2,弹力:
(1)定义:物体由于______________形变,对跟它接触的物体产生的力.
(2)产生的条件:_______________,_________________.
(3)方向和物体形变的方向________________或和使物体发生形变的外力方向____________;压力和支持力的方向:垂直__________指向被____________和被_________物体;绳子拉力的方向:_______________________________.
(4)弹簧的弹力遵守胡克定律,胡克定律的条件是弹簧发生 ______________形变;胡克定律的内容是________________________________________________
_____________________________,用公式表示_________________________,弹簧的劲度系数取决于弹簧的__________,______________,____________________.
3,摩擦力:
(1)定义
(2)滑动摩擦力:产生的条件是__________________,___________________;方向和相对运动的方向______________;大小f滑=______________;动摩擦因数和物体的______________________有关.
(3)静摩擦力:产生的条件是__________________,_____________________;方向和相对运动的趋势方向____________;大小跟沿接触面切线方向的外力大小有关(一般应用二力平衡的条件来判断),大小范围是____________________(一般可以认为最大静摩擦力等于滑动摩擦力).
三,两种方法:
1,力的合成分解:遵守___________________ 定则.
注意要点:(1)一个力可分解为____________-对分力;(2)一个已知力有确定分解的条件是__________________________或_____________________________;力正交分解法:力沿两个相互_________________的方向分解.
2,物体的受力分析法(一般方法)
(1)先确定研究对象;(2)把研究对象隔离出来;(3)分析顺序____________,___________,______________;(4)其他力(结合二力平衡条件进行判断).
四,力矩:(力使物体绕某点(轴)转动效应的量度)
1,力臂定义:__________________________________.
2,力矩的定义:力和力臂的___________叫做力对转动轴的力矩;用公式表示______.
3,大小一定的力产生最大力矩的条件是:(1)力作用在力转动轴距离最远的点上;(2)力的方向垂直于力作用点和转动轴的连线.
4,力产生的作用效果:使物体产生_____________.
五,物体的平衡:
平衡条件:对于共点力系,平衡的充要条件是合外力为零,用解析式表示为___________,__________________,____________________.有固定转轴的物体平衡条件的充要条件是对转动轴的合力矩为零,用式子表示为_______________.
二.直线运动 知识归类
一, 描述质点运动的物理量:
1,质点的定义:
2,位移和路程:
位移的定义:___________________________________________________.
物理意义:表示质点的_________________________;位移是一个________量.
路程的定义:___________________________________________________.
路程是一个______量.只有在______________________________时,位移的大小等于路程.
3,平均速度:
定义:___________________________________________________.
物理意义:只能粗略地描述变速运动在某段时间内的平均快慢程度.注意:平均速度的数值跟在哪一段时间内计算平均速度有关.
4,瞬时速度:
定义:
物理意义:精确地描述做变速运动物体在某一时刻的快慢.
5,加速度:
定义:_________________________________________________.
物理意义:表示____________________________________的快慢.
二,匀变速直线运动的特征和规律:
匀变速直线运动:加速度是一个恒量,且与速度在同一直线上.
基本公式: , ,
( 只适用于匀变速直线运动).
1,当 a = 0 , (匀速直线运动),有 vt=v0=v , s = vt
2,当 v0=0 , (初速度为零的匀变速直线运动),有 ,vt=at , ,,
当v0=0 ,a=g (自由落体运动),
有 vt=gt , , , .
3,当V0竖直向上, a= -g (竖直上抛运动).
注意:取竖直向上方向为正方向,S>0表示此时刻质点的位置在抛出点的上方;S0表示方向向上; vt <0表示方向向下.在最高点 a= -g .
结论:1,在匀变速直线运动中:
(1)在某一段时间内的平均速度等于这段时间的中点时刻的瞬时速度.
(2)在各个连续相等的时间t内,
2,在初速度为零的匀加速直线运动中:
(1)对 v0=0 的匀加速直线运动,S ∝t2;从第1个t秒开始的时刻计时,第1个,第2个,第3个 t秒内的位移之比S1:S2:S3 =1:3:5
三,运动的合成和分解:
1,两个匀速直线运动的物体的合运动是________________________运动.一般来说,两个直线运动的合运动并不一定是_______________运动,也可能是_____________运动.合运动和分运动进行的时间是__________的.
2,由于位移和速度都是______量,它们的合成和分解都按照_________法则.
速度的合成有
四,曲线运动:
曲线运动中质点的速度沿__________________方向,曲线运动中,物体的速度方向随时间而变化,所以曲线运动是一种__________运动,必具有___________.物体做曲线运动的条件是________________ .
五,平抛运动:
特征:初速度方向_______________,加速度________________.
性质和规律:
水平方向:做___________________运动, vX=v0 ,x=v0t .
竖直方向:做___________________运动, vy=gt ,y=(1/2)gt2 .
三.牛顿运动定律 知识归类
一,牛顿第一定律:
1,内容:
2,惯性的概念:__________________________________________________.
注意:不要把惯性与牛顿第一定律混淆.牛顿第一定律表示的是物体不受外力时的运动规律.惯性是物体固有的属性,只与物体的质量有关,与物体的受力及运动情况无关.合外力不为零时,惯性将表现为物体对运动状态改变的抵制.
3,对力的概念的进一步理解,力是物体对物体的作用,力是使物体产生加速度的原因和发生形变的原因.
注意:(1)力不是物体运动的原因,或维持物体速度的原因.
(2)如物体受到平衡力作用时,运动状态保持不变.
二,牛顿地第二定律:
1,内容:文字表述
公式表示:____________________
注意:(1),同向性:加速度方向与合外力方向相同.
(2),同时性:物体的加速度(而不是速度)总是与它所受合外力同时产生,同时变化,同时消失.
(3),相对性:牛顿第二定律相对于惯性系才成立.地球或相对于地球无加速度的参照物可看做惯性系.
(4),独立性:体现在力的独立作用原理_______________________.
2,由牛顿第二定律可知:如果合外力方向跟加速度方向不在同一直线上,物体就做曲线运动.
三,牛顿第三定律:
内容:文字表述:
公式表示:_________________________.
注意:要把牛顿第三定律与二力平衡相区别:作用力与反作用力是性质相同的力,作用在不同的物体上,不能相互平衡;作用力与反作用力同时存在,同时消失.二力平衡中的两个力可以是性质相同或性质不同的力,作用在同一物体上而相互平衡,当其中一个力消失时,另一个力仍可存在.
综合说明:牛顿三大定律是一个整体.其中牛顿第一定律是整体的出发点,解决了物体不受力或受平衡力时如何运动的问题,进一步明确了力的概念,引入了惯性的概念.牛顿第二定律是整个运动定律的核心,解决了物体受力时如何运动的问题,指出了运动和力之间的定量关系.牛顿第三定律进一步解决了反作用力与作用力之间的定量关系,是第一定律和第二定律的补充.
四.圆周运动 知识归类
一,匀速圆周运动的基本概念和公式:
1,速度(线速度):
定义:文字表述______________________________________;
公式表示:___________________________;
速度的其他计算公式:, r n , n 是转数.
2,角速度:
定义:文字表述______________________________________;
公式表示:________________________;
角速度的其他计算公式:_________________________________.
线速度与角速度的关系:___________________.
3,向心加速度:计算公式:, .
注意:(1)上述计算向心加速度的两个公式也适用于计算变速圆周运动的向心加速度,计算时必须用该点的线速度(或角速度)的瞬时值;
(2)v一定时,a与r成反比;一定时,a与r成正比.
4,向心力:
定义:__________________________________________________;
计算公式: :
注意:(1)匀速圆周运动大小不变,方向时刻改变,是变速运动;加速度大小不变,方向时刻改变,是一种变加速运动.匀速圆周运动的速度,加速度和所受向心力?/

 

高一物理试题

第Ⅰ卷(选择题,共48分)

一、选择题:本题包括12小题,每题4分,共48分,1-8小题为单选,9-12 小题至少有一项符合题意。

1.下列说法正确的是(  )

A.牛顿运动定律是自然界最普遍的规律,因此可以用来精确描述高速运动电子的运动情况

B.一支钢笔放在桌面上,钢笔受到的弹力是由于桌面的形变而产生的

C.物体所受的合力一定比分力大

D.随水平转台一起运动的物体受重力、支持力、静摩擦力和向心力的作用

2. 2008年9月25日晚21点10分,我国在九泉卫星发射中心将我国自行研制的“神州7号”宇宙飞船成功地送上太空,飞船绕地球飞行一圈时间为90分钟。则下列说法正确的是(  )

A. 2110分”和“90分钟”前者表示“时间”后者表示“时刻”

B.宇宙飞船在加速上升过程中航天员处于超重状态,在即将落地前用制动火箭使返回舱减速到某一安全值,在这段时间内飞船处于失重状态。

C.卫星绕地球飞行一圈平均速度为0,但它在每一时刻的瞬时速度都不为0

D.地面卫星控制中心在对飞船进行飞行姿态调整时可以将飞船看作质点

3. 如图所示,质量为m的物块静止地放在半径为R的半球体上,一物块与半球体间的动摩擦因数为μ,物块与球心的连线与水平地面的夹角为θ,则下列说法正确的是( )

A.地面对半球体的摩擦力方向水平向左

B.半球体对地面的压力小于2mg

C.物块所受摩擦力大小为mgsinθ

D.物块所受摩擦力大小为mgcosθ

 

4. 如图所示,甲、乙、丙、丁是以时间为横轴的匀变速直线运动的图象,下列说法正确的是(  )

 

A.甲是at图象                             B.乙是st图象

C.丙是st 图象                             D.丁是vt 图象

5.如图所示,木块A质量为1kg,木块B的质量为2kg ,叠放在水平地面上,AB间的最大静摩擦力为1N ,B与地面间的动摩擦因数为0.1,今用水平力F作用于B,则保持AB相对静止的条件是F不超过(g10m/s2       )

A. 1N      B. 3N     C. 4N      D. 6N

 

6.从同一高度、同时向同一水平方向抛出五个质量不同的小球,它们初速度分别为v 2v3v4v5v,在小球落地前的某个时刻,小球在空中的位置关系是(  )

A.五个小球的连线为一条直线,且连线与水平地面平行。

B.五个小球的连线为一条直线,且连线与水平地面垂直。

C.五外小球的连线为一条直线,且连线与水平地面既不平行,也不垂直。

D.五个小球的连线为一条曲线。

7.放在水平地面上的一物块,受到方向不变的水平推力F的作用,F 的大小与时间t的关系和物块速度v与时间t的关系如图所示,取重力加速度g=10m/s2。由此两图线可以求得物块的质量m和物块与地面之间的动摩擦因数μ分别为(  )

Am1kg ,μ=0.2       Bm0.5kg ,μ=0.4

C. m0.5kg ,μ=0.2     Dm1.5kg ,μ=2/15

 

8.小河宽为d,河水中各点水流速大小与各点到较近河岸边的距离成正比,vkx , k4V0/d , x是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为V0,则下列说法中正确的是(  )

A.小船渡河的轨迹一定为曲线

B.小船到达离河岸d/2处,船渡河的速度为V0

C.小船渡河时的轨迹可能为直线

D.小船到达离河岸3/4处,船的渡河速度为V0

9.下列关于运动的说法正确的是( 

A.平抛运动是匀变速曲线运动

B.匀速圆周运动是速度不变的曲线运动

C.摩擦力的方向一定与速度方向相反

D.速度变化越快,加速度一定越大

10.如图所示,质量均为mAB两球之间系着一根不计质量的弹簧,放在光滑的水平面上,A球紧靠竖直墙壁,今用水平力FB球向左推压弹簧,平衡后,突然将F撤去,在这瞬间(  )

A.球A的速度为零,加速度为F/2m

B.球B的速度为零,加速度大小为F/m

C.在弹簧第一次恢复原长之后A才离开墙壁

D.在A离开墙壁后,AB两球均向右做匀速运动

 

11.如图所示,是用以说明向心力和质量、半径之间关系的仪器,球PQ可以在光滑杆上无摩擦地滑动,两球之间用一条轻绳连接,mp2mQ,当整个装置以角速度ω匀速旋转时,两球离转轴的距离保持不变,则此时( 

A.两球受到的向心力大小相等

B. P球受到的向心力大于Q球受到的向心力

C.rP一定等于rQ/2

D.当ω增大时,P球将向外运动

 

12.物体ABC均静止在同一水平面上,它们的质量分别为mAmBmC,与水平面的动摩擦因素分别为μA、μB、μC,用平行于水平面的拉力F分别拉物体ABC,所得加速度a与拉力F的关系图线如图所对应的直线甲、乙、丙所示,甲、乙两直线平行,则以下说法正确的是(  )

A.μA<μB       mAmB

B.μB>μC       mBmC

C.μB=μC       mBmC

D. μA<μC        mAmC

 

第Ⅱ卷(非选择题  共72 分)

二、把答案填在题中的横线上或按题目要求作答。

13. ( 4分)一游标卡尺的主尺最小分度1mm ,游标上有10个小等分间隔,现用此卡尺来测量一工件的直径,如图9所示,该工件的直径为_________________mm 。

 

14. ( 8分)下图为某同学在《测定匀变速直线运动的加速度》的实验中,用打点计时器打出的一条纸带;纸带上标出的ABCDE 都是选中的记数点,每两个记数点间都有四个自然点没有画出,利用纸带旁边的刻度尺计算出:(电源频率为50赫兹,计算结果保留两位有效数字)

 

( l )打D点时纸带(或小车)的运动速度大小为v=______________m/s ;

( 2 )小车运动过程中的加速度大小为a=_____________m/s2

15.( 6分)

( 1 )在做“研究平抛物体的运动”实验时,除了木板、小球、斜槽、铅笔、图钉之外,下列器材中还需要的是

A.刻度尺     B.秒表     C.重垂线     D.天平

( 2 )实验中,下列说法正确的是

A.应使小球每次从斜槽上相同的位置自由滑下

B.斜槽轨道必须光滑

C.斜槽轨道末端可以不水平

D.要使描出的轨迹更好地反映真实运动,记录的点应适当多一些.

E .为了比较准确地描出小球运动的轨迹,应该用一条曲线把所有的点连接起来

三、计算题,按照题目要求进行计算,写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位

16. ( l2分)如图所示,在水平雪地上,小红坐在雪橇上(总质量为40kg),小莉用与水平方向成37°斜向上的拉力拉雪橇,拉力大小为F100N,雪橇与地面间的动摩擦因数为μ=0.2, ( sin37°= 0.6 , cos37°= 0.8) 求:

( 1 )雪橇运动的加速度大小

( 2 )雪橇从静止开始前进15m所需要的时间

 

17. (14分)“抛石机”是古代战争中常用的一种设备,它实际上是一个费力杠杆,如图所示,某研究性学习小组用自制的抛石机演练抛石过程.所用抛石机长臂的长度L=4.8m,质量m=10.0kg的石块装在长臂末端的口袋中.开始时长臂与水平面间的夹角α=30°,对短臂施力,使石块经较长路径获得较大的速度,当长臂转到竖直位置时立即停止转动,石块被水平抛出,石块落地位置与抛出位置的水平距离s19.2m.不计空气阻力,重力加速度取g10m/s2.求:

( 1 )石块刚被抛出时的速度大小v0 ;

( 2 )石块刚落地时的速度v1的大小和方向.

 

18. (l4分)如图所示,两端分别系着质量为m1m2小球的轻细绳跨过一光滑的可以自由旋转的小环,已知质量为m2的小球在一水平面上作匀速圆周运动,质量为m1的小球静止,其悬线竖直,m2与小环C之间绳长为L,小球直径远小于L,求:m2的角速度为多少?

 

19. (14分)如图所示,水平传送带水平段长L = 6m ,上层传送带距地面高为H5m ,与传送带等高的光滑水平台面上有一小物块以v05m/s的初速度滑上传送带,物块与传送带间的动摩擦因数μ=0.2 。设上层皮带以速度u匀速向右运行时,物体滑到B端做平抛运动的水平位移为s,求当u取下面几种数值时所对应的s。(g10m/s2)。

( 1 ) u3m/s

( 2 u8m/s

( 3 )在给定的坐标系中正确画出su关系图像。(g10m/s2)

 

 

参考答案

1.B   2.C   3.D   4.C   5.D   

6.A(本题建立的模型可能由于没有说清楚而存在问题,猜想出题人的意图是选A答案)

7.B   8.A   9.AD   10.BC   11.AC   12.AC

13. 105.3        14.   ⑴0.23    ⑵0.50左右

15.⑴AC ⑵ADE

16.⑴ma=F cos37°-μ(mg-F sin37°)可得

       a=0.3m/s2

⑵由s=at2/2可解得

       t=10s

17.⑴由一平抛运动相关知识知道:

L+Lsinα=gt2/2

S=v0t

以上两式联立解得:v016m/s

⑵刚落地进石块的竖直分速度为vy=gt=12m/s

∴合速度为两分速度的平方和再开平方,即v=20m/s

18.设BC与水平面的夹角为α,由圆周运动的相关知识结合平衡条件知:

m1gcosα=m2Lcosαω2

 

ω=m1g/(m2L)

19.⑴由题意可分析知道,物体先做匀减速运动4m,再作匀速运动2m,最后作平抛运动,水平分位移为s=3m

⑵分析可知道,物体在传送带上一直作匀加速直线运动,平抛的初速度为7m/s,平抛的水平分位移为s=7m

⑶略(提示,有几个速度范围)

 

一、选择题:(本大题共8小题,每小题6分,共48分。)

1、关于曲线运动,下列说法正确的是

B.可以是匀速率运动     A.一定是变速运动

C.可以是匀变速运动     D.加速度可能恒为零

2、水平抛出一个物体,经时间t后物体速度方向与水平方向夹角为θ,重力加速度为g,则平抛物体的初速度为

A.gtsinθ         B.gtcosθ     C.gttanθ     D.gtcotθ

3、下列说法中错误的是

A.在同一竖直平面内的不同高度将两球抛出,它们在空中不可能相遇

B.合运动的方向就是物体的实际运动的方向

C.做匀速圆周运动的物体,在任何相等的时间内通过的位移都相等

D.做圆周运动的物体的加速度不一定指向圆心

4、在匀速圆周运动中,下列物理量中不变的是

A.角速度   B.线速度   C.向心加速度 D.作用在物体上的合外力的大小

5、细绳一端固定,另一端系一小球在竖直平面内做圆周运动,设绳长为L,重力加速度为g,则

A.球通过最高点时,速度大小一定为

B.球运动的过程中,所受合外力一定指向圆心

C.球运动的过程中,可能受到绳子的拉力,重力和向心力

D.球通过最低处时一定受到绳子的拉力作用

6、如图,绳的上端固定,下端系一重物使它在水平面内做匀速圆周运动,则物体在运动

的过程中

A.重力对物体做功,绳子的拉力不做功

B.重力不做功,绳子拉力做功

C.重力不做功,绳子的拉力也不做功

D.重力和绳子的拉力都做功,但代数和为零

72007年我国铁路实施第六次大提速,提速后运行速度可达200km/h。铁路提速要解决很多技术上的问题,其中弯道改造就是一项技术含量很高的工程。在某弯道改造中下列论述正确的是

A.保持内外轨高度差不变,适当增加弯道半径

B.保持内外轨高度差不变,适当减小弯道半径

C.减小内外轨高度差,同时适当减小弯道半径

D.要减小弯道半径,内外轨高度差保持不变或减小都行

8、如图,两完全相同的小船甲和乙,他们在静止水中的速度也相同。现两船从同一地点A出发分别到达对岸的BC处,已知ABAC与河岸线的夹角相等,河水流速一定。则下列关于甲、乙两船渡河的描述正确的是

A.甲先到

B.乙先到

C.甲乙同时到

D.船速和水速的大小不明,无法确定何船先到

 

二、(每题6分,共24分)

9、质量相等的两汽车以相同的速度v分别通过半径为R的凸形桥顶P与凹形桥底P′时两桥面所受的压力之比为FPFP′=________.

10、一网球运动员在离开网的距离12 m处沿水平方向发球,发球高度为2.25 m,网的高度为0.9 m。若网球在网上0.1 m处越过,则网球的初速度v0=___________m/s。(g=10 m/s2,不计空气阻力)

11、如图所示,将质量为m的小球从倾角为θ的光滑斜面上A点以速度v0水平抛出(即v0CD),小球运动到B点,已知A点的高度h,则小球到达B点时的速度大小为______.

12、小球AB的质量均为m,分别固定在长为L的细绳和细杆一端,绳与杆都可绕另一端在竖直平面内转动,不计摩擦力,重力加速度为g。若要两个小球均能在竖直平面内做圆周运动,则它们在最低处的最小速度分别是:A球为        B球为        

三、(14)如图所示,质量m=1 kg的小球用细线拴住,线长l=0.5 m,细线所受拉力达到F=18 N时就会被拉断.当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断.若此时小球距水平地面的高度h=5 m,重力加速度g=10 m/s2,求小球落地处到地面上P点的距离.P点在悬点的正下方)。

 

 

四、(14AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑。已知原轨道半径为R,小球的质量为m,不计各处摩擦。求(1)、小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R/2时速度的大小和方向;(3)、小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力FA、FB分别是多少?

 (本试题满分为100分,考试时间为100分钟)
  第一卷(选择题共48分)
  一.选择题(本题共12小题;每小题4分,共48分。在每小题给出的四个选项中,有一个或者多个选项正确,请将正确选项填涂在答题卡上的相应位置。选对者得4分,选不全者得2分,不选或选错者不得分。)
  1.研究下列情况中的运动物体,哪些可看作质点(  )
  A.绕地球飞行的航天飞机,研究飞机以地球为中心的飞行周期 B.研究汽车车轮的一点如何运动时的车轮
  C.绕太阳公转的地球 D.绕地轴自转的地球
  2. 关于位移和路程的关系,下列说法正确的是(  )
  A.物体沿直线向某一方向运动,那么通过的路程就是位移
  B.物体沿直线向某一方向运动,那么通过的路程等于位移的大小
  C.物体通过的路程不等,但位移可能相同
  D.物体通过一段路程,但位移可能为零。
  3.以下的计时数据指时间的是( )
  A.中央电视台新闻联播节目19时开播 B.刘翔用12.88s跑完110m栏
  C.早上6h起床 D.天津开往德州的625次硬座普快列车于13h35min从天津西站发车
  4. 下列关于速度和速率的说法正确的是( )
  A.速度是描述物体位置变化大小的物理量 B.速度是描述物体位置变化快慢的物理量
  C.瞬时速度的大小通常叫速率 D.对运动物体,某段时间的平均速度不可能为零
  5. 下面有关加速度的说法中,正确的是( )
  A.加速度是描述物体速度变化大小的物理量 B.加速度是描述物体运动快慢的物理量
  C.加速度是描述物体位置变化快慢的物理量 D.加速度是描述物体速度变化快慢的物理量
  6. 在直线运动中,关于速度和加速度的说法,正确的是( )
  A.物体的速度大,加速度就大 B.物体速度的改变量大,加速度就大
  C.物体的速度改变快,加速度就大 D.物体的速度不为零时,加速度一定不为零
  7. 质点作匀变速直线运动,正确的说法是 ( )
  A.若加速度与速度方向相同,虽然加速度很小,物体的速度还是增大的
  B.若加速度与速度方向相反,虽然加速度很大,物体的速度还是减小的
  C.不管加速度与速度方向关系怎样,物体的速度都是增大的
  D.因为物体作匀变速直线运动,故其速度是均匀变化的
  8. 一物体由静止沿光滑的斜面匀加速下滑距离为 L时,速度为v,当它的速度是v/2时,它沿斜面下滑的距离是 ( )
  A.L/2 B.L/3 C.L/4         D.3L/4
  9. 某质点的位移随时间而变化的关系x =4t-4t2,x和t的单位分别是米和秒则质点的初速度和加速度分别是 ( )
   A.4m/s和4m/s2 B.4m/s和-4m/s2 C.4m/s和8m/s2 D.4m/s和-8m/s2
  10. 一个石子从高处释放,做自由落体运动,已知它在第1s内的位移大小是h,则它在第3s内的位移大小是
  A.5h B.7h C.9h D.3h
  11. 物体的初速度为v0,以加速度a做匀加速直线运动,如果要它的速度增加到初速度的n倍,则物体的位移是 ( )
  A.  B. C. D.
  12. 汽车甲沿着平直的公路以速度v0做匀速直线运动,当它经过某处的同时,该处有汽车乙开始作初速度为零的匀加速直线运动去追赶甲车,根据已知条件,下列判断中正确的是 ( )
  A.可求出乙车追上甲车时乙车的速度 B.可求出乙车追上甲车时乙车的路程
  C.可求出乙车从开始起动到追上甲车时所用的时间 D.不能求出上述三者中的任何一个.
  第二卷(非选择题共52分)
  二、实验题(本题共5小题,共20分)
  13、(4分)根据图所示的打点计时器构造图,指出各主要部件的名称:
  ② ,③ ,④ ,
  ⑤ 。
  14.(4分)在利用打点计时器测速度的
  实验中,下列说法正确的是
  A.先接通电源,后拉动纸带 B.先拉动纸带,后接通电源
  C.电火花计时器使用6V以下的交流电源 D.连续n个计时点间的时间为(n-1) 0.02秒
  15.(4分)如图是用纸带拖动小车用打点计时器测定速度打出的一条纸带,
   A、B、C、D、E为在纸带上依次打出的相邻的计时点.则AC过程的平均速度
   为 m/s,BD过程的平均速度为 m/s.
  单位:mm
  
  
  
  
  
  16.(4分)在研究匀变速直线运动的实验中,算出小车经过各计数点的瞬时速度,为了计算加速度,最合理的方法是:
  A.根据任意两计数点的速度用公式a=Δv/Δt算出加速度
  B.根据实验数据画出v-t图象,量取其倾角,由公式a=tanα求出加速度
  C.根据实验数据画出v-t图象,由图象上相距较远的两点所对应的速度、时间用公式a=Δv/Δt算出加速度
  D.依次算出通过连续两计数点间的加速度,算出平均值作为小车的加速度
  17.(4分)在用接在50 Hz交流电源上的打点计时器测定小车做匀加速直线运动的加速度的实验中,得到如图所示的一条纸带,从比较清晰的点开始起,每5个打印点取一个计数点,分别标上0、1、2、3、4…量得0与1两计数点间的距离s1 =30 mm,3与4两点间的距离s4 =48 mm,则小车的加速度为__________.
  
  
  三. 计算题(本题共3小题,共32分。解答应写出必要的文字说明、方程式
  和重要的演算步骤,结果必须明确写出数值和单位。)
  18.(8分) 篮球以10m/s的速度水平地撞击篮板后以8m/s的速度反向弹回,球与篮板的接触时间为0.1秒,则篮球在水平方向的平均加速度大小为多少?方向如何?
  
  
  
  
  
  
  19.(12分)有一个做匀变速直线运动的物体,它在两段连续相等的时间内通过的位移分别是24m和64m,连续相等的时间为4 s,求质点的初速度和加速度大小.
  
  
  
  
  
  20.(12分)火车进站时的初速度为54km/h,2s后匀减速到36km/h.
  试求:(1)火车进站时的加速度
  (2)火车进站经过10S通过的位移
  
  
  
  
  
  
  物理试题参考答案
  一、选择题(本题共12小题,每小题4分,共48分)
  1.AC 2.BCD 3.B 4.BC 5.D 6.C 7.ABD 8.C 9.D 10.A 11.A 12.A
  二、实验题(本题共5小题,每小题4分,共20分)
  13. ② 线圈 ,③ 振片 ,④ 永久磁铁 , ⑤ 振针 。
  14. A D 15、 1.3m/s 1.5m/s
  16. C 。方法A偶然误差较大,方法D实际上也是由始末两个速度决定,偶然误差也较大,只有利用实验数据画出的v-t图象,才能充分利用各次的数据减小偶然误差.故C方法正确。B方法是错误的,因为在物理图象中,两坐标的分度可以任意选取,根据同一组数据,在不同的坐标系中,可以做出倾角不同的图象,而物体的加速度是一个定值,因此只有在同一坐标系中,才能通过比较倾斜程度的方法,比较加速度的大小,但不能用tanα计算加速度.
  17.解析:因为s4-s1=3aT2, 所以a= m/s2=0.6 m/s2
  三、计算题(本题共3小题,共32分)
  18.(8分) 解析:取8m/s的速度方向为正方向,则
  
   由加速度的定义式 得:
  
   方向与8m/s的方向相同
  19.(12分)解析:(1)常规解法:由位移公式得
  s1=vAT+ aT2
  s2=[vA•2T+ a(2T)2]-(vAT+ aT2)
  将s1=24 m,s2=64 m,T=4 s代入两式求得
  vA=1 m/s,a=2.5 m/s2.
  (2)用平均速度求解:
   m/s=6 m/s,
   m/s=16 m/s
  又 +aT即16=6+a×4,得a=2.5 m/s2,
  再由s1=vAT+ aT2求得vA=1 m/s.
  (3)用平均速度求解:
  设物体通过A、B、C三点的速度分别为vA、vB、vC
  则有
  
  解得vA=1 m/s,vB=11 m/s
  vC=21 m/s,所以,加速度为
  a= m/s2 =2.5 m/ s2
   (4)用推论公式求解:
  由s2-s1=aT2得64-24=a•42
  所以a=2.5 m/s2,再代入s1=vAT+ aT2可求得vA=1 m/s.
  20.(12分)
  解析:(1)设火车进站时做匀减速直线运动的加速度为a,
  则根据 有
  
  (2)设火车经过 的时间速度减少到零,同样根据
  有
  火车进站在10S内通过的位移与在6S通过的位移相等,
  即
  

 

       


高中高一物理期末测试试题习题大全 高中高一物理下册复习教学知识点归纳总结,期末测试试题习题大全1 高中高二物理上册复习教学知识点归纳总结期末测试试题习题大全 高中 高一 高二 高三 美术理论知识,期末测试试题习题大全 高中 高一 高二 高三 体育理论知识 ,期末测试试题习题大全(转载) 高中高一语文下册复习教学知识点归纳总结,期末测试试题习题大全2 高中高一信息技术上册复习教学知识点归纳总结,期末测试试题习题大全1 高中高一英语下册复习教学知识点归纳总结,期末测试试题习题大全3 高中高一数学下册复习教学知识点归纳总结,期末测试试题习题大全2 高中高一历史上册复习教学知识点归纳总结,期末测试试题习题大全 高中高一政治上册复习教学知识点归纳总结,期末测试试题习题大全 高中高一数学上册复习教学知识点归纳总结,期末测试试题习题大全 高中高一英语上册复习教学知识点归纳总结,期末测试试题习题大全 高中高一语文上册复习教学知识点归纳总结,期末测试试题习题大全 高中高一生物下册复习教学知识点归纳总结,期末测试试题习题大全 高一英语下册期末测试试题习题大全 高中 高一 高二 高三 复习教学知识点归纳总结,期末测试试题习题大全 高中 高一 高二 高三 复习教学知识点归纳总结,期末测试试题习题大全 高中 高一 高二 高三 美术理论知识 习教学知识点归纳总结,期末测试试题习题大全 九年级物理上册复习总结,期末测试试题习题大全 高中高二数学下册复习识点归纳总结,期末测试试题习题大全 高中高二数学下册复习教学知识点归纳总结,期末测试试题习题大全 高中高二生物下册复习教学知识点归纳总结,期末测试试题习题大全1 高中高二数学下册复习教学知识点归纳总结,期末测试试题习题大全