阿里巴巴的股票代码:控制理论综述

来源:百度文库 编辑:九乡新闻网 时间:2024/04/29 17:53:36

经典控制理论

  20世纪初研制成装在飞机上的电动陀螺稳定装置,并发展成自动驾驶仪,但这仅仅是人们在实践中直观摸索的结果,尚无理论上的指导。当时的自动驾驶仪在结构上比较简陋,对飞机的稳定和控制也极为简单,控制质量不高。30年代末至40年代初形成经典控制理论。在这种理论指导下飞机上自动驾驶仪的性能得到提高,并在40年代为研制V-1、V-2导弹提供了基础。经典控制理论适用于单输入、单输出的线性定常(参数不随时间而变)系统,所以在分析设计V-1、V-2导弹控制系统时,将导弹的运动分解成单输入、单输出的运动。V-2导弹从地面飞出大气层,其特性参数变化很大,是一个时变对象,但为了应用经典控制理论而采用系数冻结法将时变对象简化为定常的对象。这样,V-1和V-2导弹虽都投入使用,但命中精度不高。经典控制理论中的非线性理论在40~50年代得到发展,经典的分析方法有描述函数法、相平面法等。这些分析方法在分析战术导弹制导系统(较多采用典型非线性的继电控制方式)时较为有效,成为50年代战术导弹得到较大发展的因素之一。

  随着导弹和航天活动的进展,对飞行器控制的精度要求大大提高,飞行器完成的任务更趋复杂,加上飞行器飞行时环境的急剧变化,对飞行器控制系统提出了更高的要求。为了满足这些要求,必须寻求新的理论来指导控制系统的设计。

现代控制理论

  60年代产生的现代控制理论是以状态变量概念为基础,利用现代数学方法和计算机来分析、综合复杂控制系统的新理论,适用于多输入、多输出,时变的或非线性系统。飞行器及其控制系统正是这样的系统。应用现代控制理论对它进行分析、综合能使飞行器控制系统的性能达到新的水平。从60年代“阿波罗”号飞船登月,70年代“阿波罗”号飞船与“联盟”号飞船的对接,直到80年代航天飞机的成功飞行,都是与现代控制理论和计算机的应用分不开的。在控制精度方面,应用现代控制理论、计算机和新型元、部件,使洲际导弹的命中精度由几十公里减小到百米左右。

  现代控制理论的核心之一是最优控制理论。这种理论在60年代初开始获得实际应用。这就改变了经典控制理论以稳定性和动态品质为中心的设计方法,而是以系统在整个工作期间的性能作为一个整体来考虑,寻求最优控制规律,从而可以大大改善系统的性能。最优控制理论用于发动机燃料和转速控制、轨迹修正最小时间控制、最优航迹控制和自动着陆控制等方面都取得了明显的成果。

  现代控制理论的另一核心是最优估计理论(卡尔曼滤波)。它为解决飞行器控制中的随机干扰和随机控制问题提供一种有力的数学工具。卡尔曼滤波突破了维纳滤波的局限性,适用于多输入、多输出线性系统,平稳或非平稳的随机过程,在飞行器测轨-跟踪、控制拦截和会合等方面得到广泛应用。

离散系统理论

  40~50年代在导弹上应用了采样控制系统,与它相应的是在40年代末产生的离散系统理论。60年代以来在飞行器控制中计算机控制系统的应用日益普遍。计算机控制(数字控制)是离散控制的一种。离散系统理论在现代飞行器控制中得到了广泛的应用。60年代“阿波罗”号飞船的登月舱就采用了数字式自动驾驶仪。

  离散控制理论在计算中也有很广泛的应用,例如,开方:

  开方公式:X(n+1)=Xn+[A/X^(k-1)-Xn]1/k.

  例如我们开3次方,即K=3;

  公式:X(n+1)=Xn+[A/X^2-Xn]1/3

  例如,A=5,5在1的3次方和2的3次方之间,X0无论取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0都可以。假如我们取2为初始值:

  第一步:2+(5/2x2-2)1/3=1.7=X1

  第二步:1.7+(5/1.7x1.7-1.7)1/3=1.71=X3

  第三步:1.71+(5/1.71x1.71-1.71)1/3=1.709=X4

  第四步:1.709+(5/1.709x1.709-1.709)1/3=1.7099=X5

  每计算一次,比上一次多取一位数,计算次数与精确度成正比。取值偏大公式会自动调小,例如第一步和第二步,取值偏小公式会自动调大,例如第三步,第四步。

自适应控制理论

  飞行器多变和复杂的飞行环境是一般控制系统难以适应的,需要研究能随环境变化自动改变系统结构和参数的自适应控制系统。自50年代末到70年代末逐步建立了自适应控制理论并据以研制出自适应驾驶仪。

大系统理论

  由于现代控制理论和计算机的应用,飞机的控制已由一般控制发展为主动控制(见主动控制技术),在飞机上有较多的分系统。将各分系统综合起来形成综合系统可使整个系统性能更加完善。70年代形成的大系统理论为分析和设计航空综合系统提供了条件。80年代已出现火控-飞行综合控制系统和推力-飞行综合控制系统。

  现代飞行器不仅要有优良的性能,而且在某些情况下还要有自主处理问题的能力。例如,在空战中要求飞机能自动飞到最优的位置,从而能有效地攻击敌机。导弹攻击活动目标时,目标可能主动还击或消极逃逸,要求导弹能自动寻求并形成最适宜的控制规律,完成击毁目标的任务。这就要求在飞行器上采用更高级的控制系统──智能控制系统。这种系统具有自学习、自行分析和推断的能力,能够自动改进控制方法和修改系统性能,最好地完成复杂任务。70年代以来系统学、模式识别、人工智能、专家系统等为分析、发展智能控制系统提供了一定的条件。在经典控制理论、现代控制理论、大系统理论、系统学等指导下,飞行器控制将向数字化、综合化以至智能化的方向发展。