龙门镖局2祝无双第几集:航母弹射器结构(图文)

来源:百度文库 编辑:九乡新闻网 时间:2024/04/29 13:05:11
最早的助飞弹射器

  


  最早的助飞弹射器在飞机被发明的时候就已经出现,和莱特兄弟同期的兰利,首先利用弹簧和滑道进行助飞,而莱特兄弟也在同样概念下,造出了落重弹射器。借助这种弹射器。莱特飞行器成功进行了动力飞行。

  

  

  

  

  早期的舰上弹射器

  


  在飞机发明后的不久就出现了水上飞机,各国海军在使用水上飞机时候,为了让舰只在不用停下来的情况下,舰艇能让飞机在短时间内升空。各国开始开发助飞装置,这种装置最早是装备在大型水面舰只上的水上飞机弹射器.结构上有落重式,飞轮式,火箭助推式,液压式和气压式多种。

  

  

  

  

  

  早期战列舰,重巡洋舰上大部分是飞轮式的弹射器。这种弹射器由飞轮储存机械能量,通过离合器拉动钢缆进行弹射。火箭助推弹射器多用于小型的舰船,二战中,英国为了对付德国潜艇,使商船队拥有一定空中力量,曾为商船装备了能让飓风式战机起飞的弹射器,这种简单的弹射器是火箭助推式的。这类弹射器性能上来讲,弹射周期都相当的长。

  

  

  

  

  早期的航母弹射器

  


  航母最早使用弹射器的是1922年从运煤船改装而成的“兰利”号

  

  

  

  虽然最高航速只有15海里,这艘航母却是美国海军航空兵非常成功的试验平台,航母技术里最关键设备如弹射器,拦机网和升降机技术都在“兰利”上得到了试验。从这艘航母得到的经验和数据,对后来航母设计和运作有极大的影响。

  30年代,大部分飞机还能凭本身的动力全负荷在航母甲板上起飞,装备弹射器的本来是为了让航母在更短时间内让更多飞机升空。英国当时的“凯旋”和“勇气”号航母就装备了压缩空气气压弹射器。这个时期的气压液压弹射器多采用活塞顶杆结构,有滑轮钢缆系统,最大功率达到5兆焦耳。

  

  

  

  这个时期下水的美国航母“萨拉托加”和“列克星顿”号上,使用了当时技术上较可靠的飞轮式弹射器。当时的弹射器,已经可以用比较短的弹射周期进行弹射。可是,弹射器的使用在运作上却增加了升空甲板人员运作的复杂性,令本来已经复杂的升空运作变得更难执行,反而导致升空延误。这个难题曾困扰航母多年,并导致弹射器被列为受淘汰设备。

  二次大战爆发后,由于护航的需要,开发了护航航母,由于这类航母的甲板距离短,飞机必需依靠弹射才能起飞,弹射器成为必不可少的设备。最初装备在护航航母上的是飞轮弹射器。后来开发的大功率的液压弹射器在1943年正式投入使用,“企业”号首批改装使用这种型号为H2-1的液压弹射器的航母之一。在这之后护航航母大部分装备了这种液压弹射器。性能上H2-1弹射器可以将11000磅的负荷在73英尺内加速到70英里/小时的速度。基本满足当时的作战需要。

  

  

  

  蒸汽弹射器的开发

  

  经过二次大战的实战考验,航母的运作技术发展的更加成熟。二战到了末期,喷气机开始出现,喷气机起飞距离的增大和飞机重量的增加,导致对弹射器的功率要求更大,可是,液压弹射器已经达到技术极限,当时已经证明这种技术的最大输出功率只能达到20兆焦耳。推进活塞速度达到90英里/小时之后的工作效率急剧下降。而且,弹射器的液压油在高速流动推进时有沸燃现象,在安全性和工作可靠性上存在极大问题,而且顶杆钢缆系统重量很大。当时弹射器的问题成为延误航母使用喷气机的主要原因,此时,英美意识到高能弹射器技术的重要性,就着手开发新技术

  在技术方面,为提高弹射器的效率,30年代已有人提出了“直接驱动”(DirectDrive)的结构概念,着重于降低驱动装置的动态总重。从而改善弹射器的加速效率。开缝式汽缸设计就是在这种概念下产生的。作为动态结构的活塞和牵引器用最短的距离直接连接,以减低推进活塞和牵引器这两个动态结构的重量。

  

  

  

  机械上,这种结构的难度是既要让驱动活塞/前引器结构在汽缸缝里自由移动,又要保持必要的工作压力。最大的技术问题是如何防止泄漏导致压力下降。不少设计者曾为此提出过多种不同的解决办法,最早的方案是在汽缸缝上设置弹性结构,既能让活塞结构通过,又可以在活塞通过后不让外漏。这种设计在40年代末曾用在XH-8液压弹射器上,性能上,XH-8弹射器可以将15000磅的负荷加速达到120英里/小时的速度。可是,试验中也发现,弹性密封装置在高压状态下密封效果很不理想。

  经过一系列的研究和试验后,发现最简单的方案,是在汽缸内放置密封条,然后通过前进的活塞,将汽缸里的金属密封条直接顶入汽缸缝,并利用缸内的压力将密封条压紧,从而压力的不泄漏。

  

  

  

  在开缝气缸开发的同时,英国的后备役人员科林。米切尔向海军建议尝试使用舰上主锅炉产生的蒸汽直接驱动弹射器的可能性。英国海军就此开展了初步试验,试验中证实了蒸汽弹射器的功率远高于液压弹射器,而且发现弹射造成的蒸汽消耗对整体推进功率影响不大。而且可靠性和安全性更高较液压弹射器更高。

  1950年,英国海军开始在“英仙座”航母上正式对蒸汽弹射器进行一系列的试验。试验中,研究人员成功地解决了影响开缝式气缸工作的两个最大问题,第一是气缸缝受缸内压力扩张的问题,第二是弹射气缸本身受热后变形的问题。1952年对蒸汽弹射器的试验证明成功,这种被称为米切尔式弹射器的装置正式开始装备而且被沿用至今。

  通过技术合作,美国直接参与了“英仙座”航母的弹射器试验而获得的这项技术,此后将研制成功的型号为C-11的蒸汽弹射器装备在“汉考克”号航母上,并在1954年6月1日成功完成弹射操作。航母也从此进入全面喷气时代。

  值得一提的是,在40年代开发蒸汽弹射器的同时,美国曾进行了超大型的飞轮储能弹射器和电动弹射器的开发和试验。理论上飞轮储能弹射器可以达到很高的功率,但是因高速离合器的技术难题得不到解决而很快被放弃。值得注意的是,当时在电动弹射器上研究上,西屋电气公司成功研制了称为“电弹器”(Electropult)的弹射器,结构上跟目前热门的电磁弹射器结构几乎一样,采用直线电机设计,而且在弹射功率与蒸汽弹射器相似的输出。只是因为运作昂贵而被放弃。不过,飞轮和直线电机技术在最近这20年被重新开发,现在热门的电磁弹射器上运用的就是飞轮储能器和直线电机技术。

  

  

  

  

  

  

  蒸汽弹射器在美国航母的装备情况

  美国在C-11蒸汽弹射器后,相继开发了型号为C-7,C-11-1,C-13,C-13-1,C13-2的多种蒸汽弹射器。

  参数\型号

  C-7

  C-11/

  C-11-1

  C-13

  C-13-1

  C-13-2

  冲程(英尺)

  253

  211

  249-10”

  309-8¾”

  306-9”

  轨道长度(英尺)

  276

  225

  264-10”

  324-10”

  324-10”

  活塞与牵引器重量(磅)

  5200

  5200

  6350

  6350

  6350

  气缸直径(英寸)

  18

  18

  18

  18

  21

  冲程总容积(立方尺)

  944

  786

  910

  1148

  1527

  目前美国的大型航母一般装置多达4台弹射器。在各种型号的弹射器当中,只有C-13-1和C-13-2型号的弹射器有足够的功率能让飞机在不迎风的情况下起飞。

  航母

  弹射器型号

  CV41中途岛

  2xC-13

  CV43珊瑚海

  3xC-11-1

  CV60萨拉托加

  2xC-112xC-7

  CV61漫游者

  4xC-7

  CV62独立

  4xC-13

  CV63小鹰

  4xC-13

  CV64星座

  4xC-13

  CVN65企业

  4xC-13-1

  CV66美国

  3xC-131xC-13-1

  CV67肯尼迪

  3xC-131xC-13-1

  CVN68尼米兹

  4xC-13-1

  CVN69艾森豪威尔

  4xC-13-1

  CVN70卡尔-文森

  4xC-13-1

  CVN71罗斯福

  4xC-13-1

  CVN72林肯

  4xC-13-2

  CVN73华盛顿

  4xC-13-2

  CVN74斯坦尼斯

  4xC-13-2

  CVN75杜鲁门

  4xC-13-2

  CVN76里根

  4xC-13-2

  

  蒸汽弹射器工作原理和结构

  蒸汽弹射器基本工作过程

  据已公开资料显示,目前在役蒸汽弹射器总重量接近500吨,每次弹射最大输出能量可达到95兆焦耳,最短工作周期为45秒,平均每次耗用近700公斤蒸汽。

  概念上蒸汽弹射器只是一个大型蒸汽汽缸和一个蒸汽控制系统。将高压蒸汽能量转化为动能进行弹射。然而由于飞机结构强度上的限制,弹射器不但要有足够的输出功率,而且要把输出功率准确控制在飞机可以接受的程度以内。

  弹射的动力来自高压蒸汽。由舰船的推进锅炉产生,储存在弹射蓄压罐内。蓄压罐的蒸汽的输入和调压是由蒸汽输入阀门控制。

  

  

  

  上图:弹射器起跑准备状态

  弹射的时候,蓄压罐内的蒸汽由弹射阀门释放到弹射汽缸内,缸内压力上升推动活塞前进。弹射阀门的另外一个更重要的作用是精确控制蒸汽进入弹射汽缸的流量变化,以此控制推力和弹射的加速度,以保证飞机结构不会超负荷。

  

  

  

  

  上图:蒸汽注入,推动活塞/牵引器带动飞机起跑

  飞机升空后,蒸汽排放阀打开,让汽缸内蒸汽排出。同时,活塞和飞机牵引器被水刹器减速后停下,然后由归位系统拉回起跑点

  

  

  

  上图:排气开始,归位系统启动

  

  

  

  上图:归位系统牵引弹射活塞归位

  蒸汽弹射器的主要结构

  从内部结构上看,一台蒸汽动力弹射器按功能可以分成7个主要系统。

  1.起飞系统

  2.蒸汽系统

  3.归位系统

  4.液压系统

  5.预力系统

  6.润滑系统

  7.控制系统

  (注:蒸汽锅炉和回收蒸汽装置在结构上属于船的动力系统,不属于弹射器的内部结构,因此本文就不在这里陈述了。)

  起飞系统的功能是产生动力和驱动飞机,这个系统由7个部分组成。

  •弹射槽盖/甲板轨道

  •动力弹射汽缸

  •汽缸缝盖和密封条

  •飞机牵引器

  •推进活塞

  •速度感应器

  •水刹器

  

  

  

  上图:生产测试中弹射槽盖

  

  

  

  上图:弹射槽结构

  

  

  

  上图:推进活塞在进行防锈处理

  蒸汽系统的功能是储存蒸汽,而且控制蒸汽在各管道和汽缸内的排入,流动和排放。这个系统主要有6个部分组成

  •蒸汽蓄压器/储气罐

  •蒸汽注入阀门

  •弹射阀门

  •排放阀门

  •减压曲管

  •蒸汽管道

  归位系统的作用,是为弹射活塞和牵引器归位提供动力和驱动。主要的部分有

  •液压发动机

  •滑轮钢缆系统

  •归位牵引器

  

  

  

  上图:归位液压泵(液压发动机)

  

  

  

  上图:钢缆绞机

  

  

  

  上图:归位牵引器

  

  

  

  上图。归位系统工作示意图

  

  

  

  上图:归位液压驱动器图

  蒸汽弹射器的液压系统的功能主要是提供控制动力。主要的部件有

  •液压泵

  •排放泵

  •液压泵

  •液压管道和阀门

  •蓄压器

  预力系留系统位于飞行甲板的起跑点。进行起跑之前,将飞机固定在弹射滑动器上,并且对施加预应力,以避免突然加速受力造成结构过载。这个系统的主要部件有

  •张力瓶和活塞

  •电控气压阀

  润滑系统分布在整个弹射器结构上,主要部分有

  •润滑油缸

  •润滑油泵

  •电控油阀

  •流量感应器

  •润滑器

  

  

  

  上图:润滑系统结构图

  控制系统是包括所有控制弹射器的运行的部件。主要组成部分为:

  •主控制台

  •甲板控制台

  •飞行控制板

  •锅炉状态显示板

  

  

  

  上图:舱内控制台

  弹射器的动力结构

  
开缝汽缸和活塞直接驱动装置是米切尔式蒸汽弹射器的一个比较独特的结构。通过一些公开的图片,我们可以看到它们的基本结构。

  

  

  

  上图:C-13弹射器的弹射气缸

  

  

  

  上图:弹射器切面图

  弹射气缸是弹射器最大的一个部件,从图片里面可以清楚看到,整个气缸是分段制造,最后连接而成的。每段气缸长约4米,接口处有密封槽,整个汽缸是通过底座固定在弹射器槽的气缸轨上而连成一体。这种多截连接气缸结构有利于降低生产,运输和维修的成本,而且可以更灵活地应付整体上的热变形。

  

  

  

  上图:美技术人员为法国航母维修弹射器

  

  

  

  上图:弹射气缸切面图

  汽缸缝盖和密封条的最重要作用是在气缸缝外形成密封,另外,密封条和汽缸缝盖在气缸缝的外部形成一个完整的钩型结构,可以夹住汽缸缝以防气缸内部压力增大的时汽缸缝扩大。

  

  

  

  上图:密封条和气缸缝盖结构图

  

  

  

  上图:开缝气缸结构图

  

  

  

  上图,气缸缝盖结构图

  

  

  

  上图:水刹桶体

  弹射活塞整体上可以分成3部分,第一部分是气密活塞和活塞环,第二部分是密封条开闭装置,第三部分是水刹锥。在活塞前进的时候,活塞同时将密封条推入汽缸盖和气缸缝的缝隙中完成密封。当活塞到达气缸末端的时候,水刹锥撞入水刹器后开始减速,最后令活塞停下。

  

  

  

  

  上图:弹射活塞及密封条开闭的工作示意图

  

  

  

  

  上图:弹射活塞前端水刹锥撞入水刹器进行减速

  

  

  

  上图:弹射器活塞体

  

  

  

  上图:飞机弹射牵引器

  弹射过程的动力控制结构

  
前面提到,飞机弹射时加速度要控制在可承受的负荷范围内,这是通过控制蒸汽注入弹射气缸的流量和流量的变化来实现的。弹射控制阀在这里起到最关键的作用。这个阀门的开关速度和幅度的精确度会直接影响到弹射加速度的可控性。整个弹射过程对加速度的控制,最后是通过改变阀门的开关时间和幅度还完成的。在操作上,弹射阀门的控制需要通过一条既定的阀门调节曲线来进行。

  

  

  

  上图:弹射动力控制阀

  不同飞机和不同装备的配搭,都会有不同的弹射重量。要保证足够的弹射速度和正确的加速度,弹射的时候要根据不同的重量制定相应的阀门调节曲线。测定这些曲线的方法,是用一种被称为空负荷(Deadload)的滑车模仿飞机的起飞重量,在弹射器上反复弹射测定加速度而获得弹射阀门的控制数据。

  

  

  

  

  

  

  

  

  

  上图:英国航母在进行弹射测试。

  随着飞机的装备多样化,飞机和不同装备的总重量出现更多差异,这就需要进行更多的弹射试验。可是,如果在航母上进行试验,滑车落水后要花不少人力进行回收,所以目前这项试验大部分都在装配了弹射器的机场上进行。法国戴高乐航母装备的是美国C-13弹射器,法国要将飞机送到美国的海军测试基地进行试验才最后获得了这些控制数据。

  蒸汽弹射器的现况

  蒸汽弹射器这种技术已经在航母上使用了50年,也使唯一经过实战证明的技术。然而,美海军在舰艇设备全面电气化的大趋势下,航母将采用电作为推进的主动力。所有动力设备也将电气化。所以在80年代末,就开始了对电磁弹射器技术的开发,并在费城东部的试验基地装备了电磁弹射器进行试验。在2003年向国会提交的报告中说到,电磁弹射器(EMAL)证实有以下的优点:

  1.电气结构,技术上容易与其他甲板上作战系统兼容

  2.操作和维修人员编制简化,而且与其它作战系统人员兼容

  3.弹射功率提高,有利于装备大型作战飞机

  4.可控性和可靠性高,简化测试

  5.结构简化,操作复杂度减低

  此外,降落拦截索系统同样也将电气化。目前这个项目由通用原子公司(GeneralAtomic)承包。

  不过,蒸汽弹射器在功能上还是能满足目前作战的需要,而且在运作技术上相当成熟。2003年美海军在公开的财政预算书里还提到了一项改良蒸汽弹射器设施的项目,报告里向国会提出要求拨款提升蒸汽弹射器的试验设施的方案,并且提到提升设备的目的以应付蒸汽弹射器服役到2050年的需要。由此看来,蒸汽弹射器还会在美航母上使用相当长一段时间的。