达延汗:gps测量中坐标系统、坐标系的转换过程

来源:百度文库 编辑:九乡新闻网 时间:2024/04/27 21:48:30
地理坐标系统简介
地理坐标系,也可称为真实世界的坐标系,是用于确定地物在地球上位置的坐标系。一个特定的地理坐标系是由一个特定的椭球体和一种特定的地图投影构成,其中椭球体是一种对地球形状的数学描述,而地图投影是将球面坐标转换成平面坐标的数学方法。绝大多数的地图都是遵照一种已知的地理坐标系来显示坐标数据。
1.地球椭球体
地球是一个表面很复杂的球体,人们以假想的平均静止的海水面形成的“大地体”为参照,推求出近似的椭球体,理论和实践证明,该椭球体近似一个以地球短轴为轴的椭园而旋转的椭球面,这个椭球面可用数学公式表达,将自然表面上的点归化到这个椭球面上,就可以计算了。下面列举了一些常用的一些椭球及参数:
1)海福特椭球(1910)                  我国52年以前采用的椭球
  a=6378388m b=6356911.9461279m α=0.33670033670
2)克拉索夫斯基椭球(1940 Krassovsky)          北京54坐标系采用的椭球
  a=6378245m b=6356863.018773m α=0.33523298692
3)1975年I.U.G.G推荐椭球(国际大地测量协会1975)     西安80坐标系采用的椭球
  a=6378140m b=6356755.2881575m α=0.0033528131778
4)WGS-84椭球(GPS全球定位系统椭球、17届国际大地测量协会) WGS-84坐标系椭球
  a=6378137m b=6356752.3142451m α=0.00335281006247
最常用的地理坐标系是经纬度坐标系,这个坐标系可以确定地球上任何一点的位置,如果我们将地球看作一个椭球体,而经纬网就是加在地球表面的地理坐标参照系格网,经度和纬度是从地球中心对地球表面给定点量测得到的角度,经度是东西方向,而纬度是南北方向,经线从地球南北极穿过,而纬线是平行于赤道的环线。地理坐标可分为天文地理坐标和大地地理坐标:天文地理坐标是用天文测量方法确定的,大地地理坐标是用大地测量方法确定的。我们在地球椭球面上所用的地理坐标系属于大地地理坐标系,简称大地坐标系。
确定椭球的大小后,还要进行椭球定向,即把旋转椭球面套在地球的一个适当的位置,这一位置就是该地理坐标系的“坐标原点”,是全部大地坐标计算的起算点,俗称“大地原点”。
需要说明的是经纬度坐标系不是一种平面坐标系,因为度不是标准的长度单位,不可用其量测面积长度;平面坐标系(又称笛卡儿坐标系),因其具有以下特性:可量测水平X方向和竖直Y方向的距离,可进行长度、角度和面积的量测,可用不同的数学公式将地球球体表面投影到二维平面上而得到广泛的应用。而每一个平面坐标系都有一特定的地图投影方法。
2.地图投影
是为解决由不可展的椭球面描绘到平面上的矛盾,用几何透视方法或数学分析的方法,将地球上的点和线投影到可展的曲面(平面、园柱面或圆锥面)上,将此可展曲面展成平面,建立该平面上的点、线和地球椭球面上的点、线的对应关系。
地图投影的过程是可以想象用一张足够大的纸去包裹地球,将地球上的地物投射到这张纸上。地球表面投影到平面上、圆锥面或者圆柱面上,然后把圆锥面、圆柱面沿母线切开后展成平面。根据这张纸包裹的方式,地图投影又可以分成:方位投影、圆锥投影和圆柱投影。根据这张纸与地球相交的方式,地图投影又可以分成切投影和割投影,在切线或者割线上的地物是没有变形的,而距离切线或者割线越远变形越大。
还有不少投影直接用解析法得到。根据所借助的几何面不同可分为伪方位投影、伪圆锥投影、伪圆柱投影等。
地图投影会存在两种误差,形状变化(也称角度变化)或者面积变化。投影以后能保持形状不变化的投影,称为等角投影 (Conformal mapping),它的优点除了地物形状保持不变以外,在地图上测量两个地物之间的角度也能和实地保持一致,这非常重要,当在两地间航行必须保持航向的准确;或者另外一个例子是无论长距离发射导弹还是短距离发射炮弹,发射角度必须准确测量出来。因此等角投影是最常被使用的投影。等角投影的缺点是高纬度地区地物的面积会被放大。投影以后能保持形状不变化的投影,称为等面积投影 (Equivalent mapping),在有按面积分析需要的应用中很重要,显示出来的地物相对面积比例准确,但是形状会有变化,假设地球上有个圆,投影后绘制出来即变成个椭圆了。还有第三种投影,非等角等面积投影,意思是既有形状变化也有面积变化,这类投影既不等角也不等积,长度、角度、面积都有变形。其中有些投影在某个主方向上保持长度比例等于1,称为等距投影。
每一种投影都有其各自的适用方面。例如,墨卡托投影适用于海图,其面积变形随着纬度的增高而加大,但其方向变形很小;横轴墨卡托投影的面积变形随着距中央经线的距离的加大而增大,适用于制作不同的国家地图。等角投影常用于航海图、风向图、洋流图等。现在世界各国地形图采用此类投影比较多。等积投影用于绘制经济地区图和某些自然地图。对于大多数数学地图和小比例尺普通地图来说,应优先考虑等积的要求。地理区域,诸如国家、水域和地理分类地区(植被、人口、气候等)相对分布范围,显然是十分重要的内容。任意投影常用作数学地图,以及要求沿某一主方向保持距离正确的地图。常用作世界地图的投影有墨卡托投影、高尔投影、摩尔威特投影、等差分纬线多圆锥投影、格灵顿投影、桑森投影、乌尔马耶夫投影等。下面对我国地形图所采用的高斯克吕格投影进行简单的介绍。
2.1高斯-克吕格直角坐标
  高斯-克吕格投影(Gauss_Krivger)属于等角横切椭圆柱投影,是设想用一个椭圆柱横套在地球椭球的外面,并与设定的中央经线相切。其经纬线互相垂直,变形最大位于赤道与投影带最外一条经线的交点上,常用于纬度较高地区。
  高斯-克吕格投影分带规定:该投影是我国国家基本比例尺地形图的数学基础,为控制变形,采用分带投影的方法,在比例尺 1:2.5万-1:50万图上采用6°分带,对比例尺为 1:1万及大于1:1万的图采用3°分带。
  6°分带法:从格林威治零度经线起,每6°分为一个投影带,全球共分为60个投影带,东半球从东经0°-6°为第一带,中央经线为3°,依此类推,投影带号为1-30。其投影代号n和中央经线经度L0的计算公式为:L0=(6n-3)°;西半球投影带从180°回算到0°,编号为31-60,投影代号n和中央经线经度L0的计算公式为L0=360-(6n-3)°。
  3°分带法:从东经1°30′起,每3°为一带,将全球划分为120个投影带,东经1°30′-4°30′,...178°30′-西经178°30′,...1°30′-东经1°30′。
  东半球有60个投影带,编号1-60,各带中央经线计算公式:L0=3°n ,中央经线为3°、6°...180°。
  西半球有60个投影带,编号1-60,各带中央经线计算公式:L0=360°-3°n ,中央经线为西经177°、...3°、0°。
我国规定将各带纵坐标轴西移500公里,即将所有y值加上500公里,坐标值前再加各带带号。以18带为例,原坐标值为y=243353.5m,西移后为y=743353.5,加带号通用坐标为y=18743353.5 。
为了方便大家对不同比例尺的地形图检索,最后对我国地形图的分幅与编号规则进行简单的介绍。
3.我国地形图分幅与编号
  我国基本比例尺地形图分幅与编号,以1:100万地形图为基础,延伸出1:50万、1:25万、1:10万,再以1:10万为基础,延伸出1:5万、1:2.5万及1:1万三种比例尺。
  1:100万从赤道起向两极每纬差4°为一行,至88°,南北半球各分为22横列,依次编号A、B、... V;由精度180°西向东每6°一列,全球60列,以1-60表示,如海南所在1:100万图在第5行,第49列,其编号为 E-49 。
  在1:100万图上,按经差3°纬差2°分成四幅1:50万地形图,编为A、B、C、D,如 E-49-A。按经差1°30′纬差1°分成16幅1:25万地形图,编为[1]、...[16],如 E-49-[1]。按经差30′纬差20′分成144幅1:10万地形图,编为1、...144,如 E-49-1。即后三种比例尺各自独立地与1:100万地图的图号联系。
  1:10万图上每经差15′纬差10′分成四幅1:5万地形图,编为A、B、C、D,如 E-49-1-A。 
  1:5万图上每经差7′30″纬差5′分成四幅1:2.5万,编为1、2、3、4,如 E-49-1-A-1。
  1:10万图上每经差3′45″纬差2′30″分成64幅1:1万地形图,编为(1)、...(64),如E-49-1-A-(1)。
  1:1万图上每经差1′52″纬差1′15″分成四幅1:5000地形图,编为a、b、c、d,如E-49-1-A-(1)-a。
gps测量中坐标系统、坐标系的转换过程  --------------------------------------------------------------------------------
 

  摘 要:GPS在测量领域得到了广泛的应用,本文介绍将GPS所采集到的WGS-84坐标转换成工程所需的坐标的过程。关键词:GPS 坐标系统 坐标系 转换一、概述GPS及其应用GPS即全球定位系统(Global Positioning System)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成的卫星导航定位系统。作为新一代的卫星导航定位系统经过二十多年的发展,已成为在航空、航天、军事、交通运输、资源勘探、通信气象等所有的领域中一种被广泛采用的系统。我国测绘部门使用GPS也近十年了,它最初主要用于高精度大地测量和控制测量,建立各种类型和等级的测量控制网,现在它除了继续在这些领域发挥着重要作用外还在测量领域的其它方面得到充分的应用,如用于各种类型的工程测量、变形观测、航空摄影测量、海洋测量和地理信息系统中地理数据的采集等。GPS以测量精度高; 操作简便,仪器体积小,便于携带; 全天候操作;观测点之间无须通视;测量结果统一在WGS84坐标下,信息自动接收、存储,减少繁琐的中间处理环节、高效益等显著特点,赢得广大测绘工作者的信赖。二、GPS测量常用的坐标系统1.WGS-84坐标系WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。 WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的启始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。采用椭球参数为: a = 6378137m f = 1/298.2572235632.1954年北京坐标系 1954年北京坐标系是我国目前广泛采用的大地测量坐标系,是一种参心坐标系统。该坐标系源自于原苏联采用过的1942年普尔科夫坐标系。该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:a = 6378245m f = 1/298.3。我国地形图上的平面坐标位置都是以这个数据为基准推算的。3.地方坐标系(任意独立坐标系)在我们测量过程中时常会遇到的如一些某城市坐标系、某城建坐标系、某港口坐标系等,或我们自己为了测量方便而临时建立的独立坐标系。三、坐标系统的转换在工程应用中使用GPS卫星定位系统采集到的数据是WGS-84坐标系数据,而目前我们测量成果普遍使用的是以1954年北京坐标系或是地方(任意)独立坐标系为基础的坐标数据。因此必须将WGS-84坐标转换到BJ-54坐标系或地方(任意)独立坐标系。目前一般采用布尔莎公式(七参数法)完成WGS-84坐标系到北京54坐标系的转换,得到北京54坐标数据。XBJ54=XWGS84 KXWGS84 Δx YWGS84ξZ"/ρ"-ZWGS84ξY"/ρ"YBJ54=YWGS84 KYWGS84 ΔY-XWGS84ξZ"/ρ" ZWGS84ξX"/ρ"ZBJ54=ZWGS84 KZWGS84 ΔZ XWGS84ξY"/ρ"-ZWGS84ξX"/ρ" 四、坐标系的变换同一坐标系统下坐标有多种不同的表现形式,一种形式实际上就是一种坐标系。如空间直角坐标系(X,Y,Z)、大地坐标系(B,L)、平面直角坐标(x,y)等。通过坐标统的转换我们得到了BJ54坐标系统下的空间直角坐标,我们还须在BJ54坐标系统下再进行各种坐标系的转换,直至得到工程所需的坐标。1.将空间直角坐标系转换成大地坐标系,得到大地坐标(B,L):L=arctan(Y/X)B=arctan {(Z Ne2sinB)/(X2 Y2)0.5}H=(X2 Y2)0.5sinB-N用上式采用迭代法求出大地坐标(B,L)2.将大地坐标系转换成高斯坐标系,得到高斯坐标(x,y)按高斯投影的方法求得高斯坐标,x=F1(B,L),y=F2(B,L)3.将高斯坐标系转换成任意独立坐标系,得到独立坐标(x’,y’)在小范围内测量,我们可以将地面当作平面,用简单的旋转、平移便可将高斯坐标换成工程中所采用坐标系的坐标(x’,y’),x’=xcosα ysinαy’=ycosα-xsinα五、小结由于GPS测量的种种优点,GPS 定位技术现已基本上取代了常规测量手段成为了主要的技术手段,市面上出现了许多转换软件和不同型号的GPS数据处理配套软件(包含了怎样将GPS测量中所得到的WGS-84转换成工程中所须坐标的功能),万变不离其宗,只要我们明白了WGS-84转换到独立坐标系的转换过程,便可很容易的使用该软件了,甚至可以自己编写程序,将WGS-84坐标转换成独立坐标系坐标。本文主要是介绍坐标系统、坐标系的转换过程,文中提及的符号及具体转换方法请参阅相关文献。参考文献[1] 徐绍铨等.GPS测量原理及应用(3S丛书).武汉测绘科技大学出版社.1998.[2] 朱华统等.GPS坐标系统的变换.北京测绘出版社.1994.[3] 武汉测绘学院等.控制测量学(下).测绘出版社.1988.[4] 杨德麟等.大比例尺数字测图的原理方法与应用.清华大学出版社.1998.  本文章来自www.edu-hb.com 湖北招生考试网 原文链接:http://www.edu-hb.com/Html/200909/28/20090928152738.htm