赵丽华离婚:浅谈显示器(原创整理

来源:百度文库 编辑:九乡新闻网 时间:2024/04/28 21:55:35
与传统CRT显示器明显不同的是,LCD显示器可能存在“余辉”现象。如果响应速度不够快的话,显示动态画面时会有明显的拖影,特别是在那些高速移动的3D游戏或者DVD影片中。为此,很多消费者将响应速度作为选购LCD显示器时最重要的技术指标之一。不过应当指出的是,仅仅通过厂商的标称值判断并不可靠,毕竟这是一项很主观的技术指标。毫无疑问,通过实际游戏以及DVD影片进行测试才是最稳妥的方法。
  3D游戏测试

  响应时间是液晶显示器特有的一个性能指标,液晶的显示是通过高分子物质结晶状态的变化导致不同的折射率,来实现白色光线的不同颜色透射,投影在显示器表面,从而获得不同颜色的点。其中这个“高分子物质结晶状态的变化”是一个物理的形变过程,需要一定的时间来完成,这就造成了液晶显示器上的每一个点在得到信号之后,需要一定的形变时间,这个形变的时间就是“响应时间”。

  很多读者反映液晶显示器的“响应时间”指标往往模棱两可,媒体宣传资料与商家的说明存在很大出入,其中就很可能是商家蒙蔽不知情的消费者。事实上,液晶的响应时间可以细分为“上升响应时间”和“下降响应时间”,我们常说的响应时间是“上升+下降”的总时间。通常上升响应时间要快于下降响应时间,但无论哪个更快,一定都小于总的响应时间,而一些商家只标明上升(或下降)响应时间,自然看起来会比较小,以此来错误引导消费者。这样的更可恶,说错不错,但明显又是误导。  

  毫无疑问,自己的眼睛才是最可靠的。大家可以进行实际3D游戏的测试进行检验,这才是最为稳妥的方法。当然,游戏的选择应该有所针对性。大多数RPG游戏并不能凸现“响应时间”指标,推荐使用大家十分熟悉的FIFA以及NeedForSpeed进行测试。前者对液晶显示器的“响应时间”要求一般,普通25ms的水准即可展现出令人满意的表现,而后者的要求近乎苛刻,只有真正的16ms产品才能逃过最挑剔的眼睛。

  对于QuakeⅢ、UnrealTournament2003、DoomⅢ等FPS射击游戏,需要的画面显示速度达到每秒60帧以上才能让人感觉十分流畅,而如今CPU以及显卡的硬件水准也完全能够达到这一要求。根据经验,此时液晶显示器要做到毫无拖影的话,16ms左右的响应时间才能完全满足。

  如果在购买时因为种种原因而不方便使用游戏进行测试,那么大家可以采用如下这一简单的方法,条件是使用滚轮鼠标。在一个较长的网页中,反复滚动鼠标滚轮,此时响应时间大于25ms的液晶显示器都会有明显的“叠印”。

  此外,如果有条件的话,大家还可以考虑借助软件进行辅助测试。Monitors Matter CheckScreen是一款相当不错的液晶显示器测试软件,其Smeraing测试单元可以显示屏幕上快速移动的小方块,其中方块后拖影的个数代表显示器讯号的响应时间的高低。与实际游戏测试相结合,此时将令测试结果更加可信!  

  DVD播放测试

  除了3D游戏,DVD影片也会对液晶显示器的响应时间提出一定要求,不过这远没有竞速游戏那样苛刻。事实上,理论上响应时间=1/帧速率,由于DVD影片一般固定29Fps,因此大约34ms的响应时间能够满足需求。不过在实际计算时,往往需要乘以一个有效系数。响应时间为30ms的液晶显示器每秒钟能够显示33帧画面,这是已经能满足DVD播放的需要,而响应时间为25ms的产品每秒钟能够显示40帧画面,完全满足DVD播放以及大部分视频画面的需要。

  理论上的分析确实很简单,但是问题的根源在于厂商的标称值并不一定就是最准确的。用过高端液晶显示器的用户都会有这样的体验,很多品牌产品根本不提及“响应时间”这一概念,但是在实际表现中却十分出色。相反,部分号称拥有25ms,甚至20ms的产品却会在动感并不强烈的视频画面中败下阵来。为此,我们还是建议大家使用实际画面进行测试。当然,平静的生活片并没有说服力,建议采用动作片,或者打斗激烈的动画片。

  除了液晶显示器的响应时间,我们还不能忘记色彩对比度与亮度这两项同样重要的技术指标。第一次看液晶显示器的用户都会对其较低的对比度与亮度难以适应,而在一些以昏暗背景为主的DVD影片中就更为明显了。

  亮度对于液晶显示器而言十分重要,这也是由其本身的成像原理所决定的。然而大家需要明白的是,作为一个主观性更强的技术指标,亮度只能通过自己测试来判断,仅仅根据厂商的数据是毫无意义的,因为所谓的数据基准一直模糊不清。

  利用背景昏暗的DVD影片进行测试自然是可行的,不过这样可能缺少统一的判断标准,因此我们介绍使用CS这款射击游戏进行测试。CS中有一些阴暗的死角,总是有一些人喜欢躲在里面偷袭,而这里便是最能体现液晶显示器亮度的地方。当然,测试之前应该将亮度设定到100%。如果液晶显示器在这方面有所欠缺的话,那么此时画面将十分昏暗,甚至根本看不清。

  一般来说,亮度能够达到250cd/m2的产品都应该不成问题,而少数号称300cd/m2亮度的产品却可能露出马脚。需要提醒大家的是,对于亮度的追求也不能太过执着,高亮总会带来功耗增加和提前老化。少数产品为了提高亮度采用大功率灯管,此时甚至可能造成整个视野范围内亮度不均,而且伤害视力。

  对比度其实就是屏幕能够显示的“最亮的白色”和“最暗的黑色”的对比程度。较高的对比度可以使文本显示得更加锐利,打个简单的比方,在纯白色的纸上印刷的文字总要比灰色纸上印刷的文字更清晰易读,因为前者的对比度更高。

  在DVD视频中,对比度的作用十分明显。然而由于人眼的特性,对比度必须在两台显示器对比的情况下才能分清,因此这令购买前的目测判断十分不便。为此,我们还是建议大家使用最简单的“货比三家”的方法,而不仅仅是参考所谓的技术指标。

  标准是死的,人是活的。当标准无法给我们一个信得过的“说法”的时候,我们就要仰仗自己的眼睛了。通过实际的游戏以及DVD视频测试,在条件允许的情况下,使用测试软件进行辅助,再货比三家,看看高端产品与低端产品的差距,这样心中自然会有明确的答案。

破除对液晶显示器参数的迷信

2005年,国内显示器市场真正步入LCD液晶时代。大家面临着一个非常困惑的问题,那就是怎么才能买到一款称心如意的液晶显示器。相对于过去的CRT显示器,挑选LCD面临着许多困难:
  首先是品牌的挑选。CRT品牌认知度很高,大家都知道专业应用要选三菱、索尼或Eizo,一般家用找飞利浦或三星,要便宜货找国产杂牌。
  而对于LCD,选择不同品牌意味着什么,选择名牌与其它品牌具体得到怎样不同的效果,还不是太明确。
  其次,挑选CRT的标准非常明确,看显像管的品牌和类型、显示器带宽、桌面边缘是否平直等,基本上按这些标准买CRT都是一分钱一分货。
  LCD则不同,一方面,除了少数产品标明使用了名牌Sharp面板之外,大多数产品连店员都不清楚用的是什么面板;另一方面,低价液晶的亮度、对比度、响应时间等参数高于昂贵的名牌液晶,是非常普遍的现象。
  不知道该选择什么品牌,没有一套标准值得信赖,购买液晶显示器成为DIY市场前所未有的冒险。
  要找到购买液晶显示器可靠的方法,买到真正满意的产品,必须先彻底破除对不可信标准的迷信。在此将与各位一起探讨各个参数的意义,容易被误导的原因,以及解决办法,这次要谈的是炒得最火热的响应时间问题。

什么是响应速度问题

图为:响应速度

  TFT液晶显示的原理,就是在电压影响下偏转晶体,让背光灯不同颜色和强度的光透过,由此成像。从显示一种颜色转换到另一种颜色,就是晶体偏转的过程,需要一定的时间,这就是液晶的响应时间。

图为:具有快速(上面)和慢速(下面)响应时间的显示器播放动态影像比较
  如果响应慢,动态显示就会变得模糊不清。所以游戏和视频播放都要求响应速度要快。

为什么标称响应速度快的液晶会模糊?
  TFT液晶显示器在不同颜色之间转换的时候,反应速度并不相同。

图为:TFT液晶显示器在不同颜色之间转换的时候,反应速度并不相同

  市面上绝大部分液晶显示器标称的响应速度,都是黑色与白色之间转换所需要的时间。

图为:对比

  与一般人猜想不同的是,液晶黑白转换是最快的而不是最慢的。液晶显示器其它颜色之间转换,如白色变灰色,红色变蓝色等,比黑白之间转变所需要的时间多。

  一款标称12ms的液晶显示器,显示的蓝点要变成红点所需要的时间,可能是几十ms甚至更高。

  现实使用中,动态画面的颜色改变非常丰富,更多的是不同颜色和不同灰阶的转换,需要几十ms甚至更多的时间,画面就模糊了。

名牌液晶:响应速度慢贵得有道理
  关于响应速度,除了前面说的,黑白响应时间比其它颜色之间转换快,另有其它规律:
  第一,黑白响应时间相同的不同品牌型号显示器,其它颜色的响应时间并不相同。譬如其中一款从蓝变灰的延迟时间可能需要80ms,而另一款只需要20ms。
  第二,标称响应慢的显示器,实际动态画面可能比另一款标称快的清晰。本质上就是说,虽然另一款显示器黑白响应时间较快,但其它颜色响应慢,而现实使用中的动态画面极少需要黑白转换,更大程度上由其它颜色转换的速度决定。

图为:液晶显示器

  因此,一款标称20ms的显示器,在实际使用中响应速度可能比另一款12ms的还要好。名牌20ms的液晶显示器,会比一般品牌12ms的贵,这就是理由之一。
  我们的导购专家小肥同志常说:懂的人骗不了,不懂的人不好骗,最易骗的就是半懂不懂的人。对响应时间的理解又是这条规律很好的一个例子,深刻理解的人知道低价反应时间快的缺点,完全不懂的人比较相信名牌和一分钱一分货的市场规律,半懂不懂的人最容易被高标称值的廉价产品骗倒。

对策:教你挑选响应速度真正快的产品
  选购的时候,光看标称规格中的响应时间,是很容易上当的。有两个对策可以找到动态显示效果好,适合玩游戏和欣赏视频播放的液晶显示器:
  首先,应该以实际观看视频播放效果清晰无拖影为准,也可以改进传统测试的方法:传统测试普遍采用黑色背景下快速移动鼠标指针,或拖动word文档观察拖影现象,这两种方法正好都是测黑白转换的响应时间。针对液晶显示器的特性,应该多转换色使用不同的背景色和移动色块的颜色,全面观察不同颜色转换的响应时间。
  很多时候在市场上没有方便的条件进行第一种方法的观察,还有另一个选择:购买以灰阶响应时间为标称值,或采用了特殊技术,灰阶响应时间与黑白响应时间比较接近的产品。


图为:OverDrive技术

  如BenQ某些型号的液晶显示器,使用了OverDrive技术,让其它颜色之间转换的时候,达到黑色与白色之间转换的速度那么快。

图为:OverDrive技术

  再如三菱的部分液晶显示器,使用了与OverDrive同样原理的FFD技术,达到同样的效果。
  还有一些品牌干脆在产品规格中就不标黑白响应时间,而用更具实际参考价值的灰阶响应时间为标识。由于现在对液晶显示器的认知度不高,具体这些技术和不同产品的差别更是少有人知晓,选购之前应该多到网上了解。希望以后有时间能为大家搜集总结,具体哪些显示器在响应速度方面使用了不同技术。

并非响应速度越快的液晶就越好

  提高液晶显示器的响应速度,技术上有四种方法:
减小液晶材料的粘滞系数
减小液晶单元盒的间隙距离
增加驱动电压
提高介电系数

  相应提高液晶显示器响应时间有三个方法:
降低液晶粘稠度
采用性能不同的液晶原材料
提高工艺,减小液晶单元盒的间隙距离
加大驱动的启动电压

  粘滞度与色彩是矛盾的:液晶粘稠了,色彩就鲜艳,但响应时间慢;而液晶稀薄了,响应时间就快,但色彩会变淡。因此,使用相同液晶材料的同一代面板,响应速度快的适合游戏玩家,响应速度慢的有更好的色彩表现和更清晰的2D显示,更适合平面设计和办公、上网应用。
  黑白反应时间比灰阶快,是因为从白转黑的电压最大,需要的颜色越浅电压越小。为了增加灰阶响应时间,一种做法是在需要某个灰度的时候,加大电压让液晶偏转加快,控制好到一定时间电压变回维持那个偏转度所需的时间。如果所用的启动电压超过黑白转换电压,多少会减少液晶面板的寿命。
  因此,并非响应速度越快的液晶就越好,对于同一代液晶面板来说,响应速度快的追求的是动态显示效果,速度慢的追求的是色彩表现,各有所长而已。这也是专业设计用的高价液晶响应时间普遍较慢的另一个主要原因。液晶面板中首屈一指的Sharp就不象其它品牌一样极力追求响应速度,它是以色彩表现出色赢得喝彩。
  如果只是办公、上网,同价位显示器买响应速度慢的更好。

关于分辨率的详解

分辨率是和图像相关的一个重要概念,它是衡量图像细节表现力的技术参数。但分辨率的种类有很多,其含义也各不相同。正确理解分辨率在各种情况下的具体含义,弄清不同表示方法之间的相互关系,是至关重要的一步。下面对几种常见的图像输入/输出分辨率及不同图像输入/输出设备分辨率作个介绍,供大家参考。
  图象分辨率

  图象分辨率(Image Resolution):指图象中存储的信息量。这种分辨率有多种衡量方法,典型的是以每英寸的像素数(PPI)来衡量。图象分辨率和图象尺寸的值一起决定文件的大小及输出质量,该值越大图形文件所占用的磁盘空间也就越多。图象分辨率以比例关系影响着文件的大小,即文件大小与其图象分辨率的平方成正比。如果保持图象尺寸不变,将图象分辨率提高一倍,则其文件大小增大为原来的四倍。

  扫描分辨率

  扫描分辨率:指在扫描一幅图象之前所设定的分辨率,它将影响所生成的图象文件的质量和使用性能,它决定图象将以何种方式显示或打印。如果扫描图象用于640×480像素的屏幕显示,则扫描分辨率不必大于一般显示器屏幕的设备分辨率,即一般不超过120DPI。但大多数情况下,扫描图象是为了在高分辨率的设备中输出。如果图象扫描分辨率过低,会导致输出的效果非常粗糙。反之,如果扫描分辨率过高,则数字图象中会产生超过打印所需要的信息,不但减慢打印速度,而且在打印输出时会使图象色调的细微过渡丢失。一般情况下,图象分辨率应该是网幕频率的2倍,这是目前中国大多数输出中心和印刷厂都采用的标准。然而实际上,图象分辨率应该是网幕频率的1.5倍,关于这个问题,恐怕会有争议,而具体到不同的图象本身,情况也确实各不相同。要了解详细内容,请看《网屏角度及输出分辨率》。

  网屏分辨率

  网屏分辨率(Screen Resolution):又称网幕频率,指的是打印灰度级图象或分色图象所用的网屏上每英寸的点数。这种分辨率通过每英寸的行数(LPI)来表示。

  图象的位分辨率

  图象的位分辨率(Bit Resolution):又称位深,是用来衡量每个像素储存信息的位数。这种分辨率决定可以标记为多少种色彩等级的可能性。一般常见的有8位、16位、24位或32位色彩。有时我们也将位分辨率称为颜色深度。所谓“位”,实际上是指“2”的平方次数,8位即是2的八次方,也就是8个2相乘,等于256。所以,一副8位色彩深度的图象,所能表现的色彩等级是256级。

  设备分辨率

  设备分辨率(Device Resolution):又称输出分辨率,指的是各类输出设备每英寸上可产生的点数,如显示器、喷墨打印机、激光打印机、绘图仪的分辨率。这种分辨率通过DPI来衡量,目前,PC显示器的设备分辨率在60至120DPI之间。而打印设备的分辨率则在360至1440DPI之间。
  
  1.扫描仪、打印机、显示器的分辨率
  对扫描仪、打印机及显示器等硬件设备来说,其分辨率用每英寸上可产生的点数即DPI(Dots Per Inch)来度量。
  扫描仪的分辨率要从三个方面来确定:光学部分、硬件部分和软件部分。也就是说,扫描仪的分辨率等于其光学部件的分辨率加上其自身通过硬件及软件进行处理分析所得到的分辨率。光学分辨率是扫描仪的光学部件在每平方英寸面积内所能捕捉到的实际的光点数,是指扫描仪CCD的物理分辨率,也是扫描仪的真实分辨率,它的数值是由CCD的像素点除以扫描仪水平最大可扫尺寸得到的数值。分辨率为1200DPI的扫描仪,其光学部分的分辨率只占400~600DPI。扩充部分的分辨率(由硬件和软件所生成的)是通过计算机对图像进行分析,对空白部分进行科学填充所产生的(这一过程也叫插值处理)。光学扫描与输出是一对一的,扫描到什么,输出的就是什么。经过计算机软硬件处理之后,输出的图像就会变得更逼真,分辨率会更高。目前市面上出售的扫描仪大都具有对分辨率的软、硬件扩充功能。有的扫描仪广告上写9600×9600DPI,这只是通过软件插值得到的最大分辨率,并不是扫描仪真正光学分辨率。所以对扫描仪来讲,其分辨率有光学分辨率(或称光学解析度)和最大分辨率之说。
  我们说某台扫描仪的分辨率高达4800DPI(这个4800DPI是光学分辨率和软件差值处理的总和),是指用扫描仪输入图像时,在1平方英寸的扫描幅面上,可采集到4800×4800个像素点(Pixel)。1英寸见方的扫描区域,用4800DPI的分辨率扫描后生成的图像大小是4800Pixel×4800Pixel。在扫描图像时,扫描分辨率设得越高,生成的图像的效果就越精细,生成的图像文件也越大,但插值成分也越多。
  我们说某台打印机的分辨率为360DPI,是指在用该打印机输出图像时,在每英寸打印纸上可以打印出360个表征图像输出效果的色点。表示打印机分辨率的这个数越大,表明图像输出的色点就越小,输出的图像效果就越精细。打印机色点的大小只同打印机的硬件工艺有关,而与要输出图像的分辨率无关。
  我们说某个品牌的显示器的分辨率为80DPI,是指在显示器的有效显示范围内,显示器的显像设备可以在每英寸荧光屏上产生80个光点。举个例子来说,一台14英寸的显示器(荧光屏对角线长度为14英寸),其点距为0.28mm,那么:显示器分辨率=25.3995mm/inch÷0.28mm/Dot≈90DPI(1 inch=25.3995mm)。显示器出厂时一般并不标出表征显示器分辨率的DPI值,只给出点距,我们根据上述公式即可算出显示器的分辨率。根据我们算出的DPI值,我们进而可以推算出显示器可支持的最高显示模式。假设该14英寸显示器荧光屏
有效显示范围的对角线长度为11.5英寸,因显示器的水平方向和垂直方向的显示比例为4:3,故可设有效显示范围水平宽度为4X英寸,垂直高度为3X英寸,根据数学上的勾股定理,可得X=11.5÷5=2.3英寸。所以有效显示范围宽度为2.3×4=9.2英寸,垂直高度为2.3×3=6.8英寸。最高显示模式约为:800(9.2×90)×600(6.8×90),这时是用一个点(Dot)表示一个像素(pixel)。
  上面主要讲述了扫描仪、打印机和显示器的设备分辨率。严格来讲,设备分辨率与用该设备处理的图像的分辨率是两个既有联系又有区别的概念。设备分辨率是由硬件设备的生产工艺决定的,尽管可以通过软件的方法调整有些设备的分辨率,但它们都有一个局限的最高分辨率,用户不能对它有任何突破。图像的分辨率是描述图像本身精细程度的一个量度。对于扫描仪、打印机处理的图像,其分辨率以每英寸上的像素数即PPI(PixelsPer Inch)来衡量。用于计算机视频处理的图像,以水平和垂直方向上所能显示的像素数来表示分辨率,比如800×600、640×480等等。图像本身是否精细只与图像自身的分辨率有关,而与处理它的硬件设备的分辨率无关,但图像的处理结果是否精细却与处理它的设备的分辨率直接相关。举例来说,一幅90PPI的图像是比较精细的了,如果将它放在分辨率为40DPI的打印机上打印,打印效果也是相当糟糕的。对扫描仪来讲,其分辨率的高低与生成图像的精细程度成正比,但其分辨率只能为图像分辨率给出一个初始值(这个PPI值与扫描仪的分辨率的DPI的设定值是相等的),并不对图像的分辨率产生限制,我们可以用软件任意调整扫描生成的图像的分辨率。另外,需要注意的是,我们通常说一幅640×480的图像,说的是图像的大小,其中并不包括图像分辨率的含义。

  2.数码相机的分辨率
  数码相机分辨率的高低决定了所拍摄影像最终所能打印出高质量画面的大小,或在计算机显示器上所能显示画面的大小。数码相机分辨率的高低,取决于相机中CCD(Charge Coupled Device:电荷耦合器件)芯片上像素的多少,像素越多,分辨率越高。由此可见,数码相机的分辨也是由其生产工艺决定的,在出厂时就固定了的,用户只能选择不同分辨率的数码相机,却不能调整一台数码相机的分辨率。就同类数码相机而言,分辨率越高,相机档次越高,但高分辨率的相机生成的数据文件很大,对加工、处理的计算机的速度、内存和硬盘的容量以及相应软件都有较高的要求。
  数码相机像素水平的高低与最终所能打印一定分辨率照片的尺寸,可用以下方法简单计算:假如彩色打印机的分辨率为N DPI ,数码相机水平像素为M,最大可打印出的照片为M÷N英寸。比如,打印机的分辨率为300DPI,水平像素为3600的数码相机所摄影像文件不作插值处理所能打印出的最大照片尺寸为12英寸(3600÷300)。很显然,要打印得到的数码照片的尺寸越大,就需要有更高像素水平的数码相机。计算显示尺寸的方法与打印尺寸的方法相同。

  3.投影机的分辨率
  投影机的分辨率常见的有两种表示方式,一种是以电视线(TV线)的方式表示,另外是以像素的方式表示。以电视线表示时,其分辨率的含义与电视相似,这种分辨率表示方式主要是为了匹配接入投影机的电视信号而提供的。以像素方式表示时通常表示为1024×768等形式,从某种意义上讲这种分辨率的限制是对输入投影机的VGA信号的行频及场频作一定要求。当VGA信号的行频或场频超过这个限制后,投影机就不能正常投显了。有关行频、场频与分辨率的关系读者可参看有关资料,这里不再赘述。

  4.商业印刷领域的分辨率
  在商业印刷领域,分辨率以每英寸上等距离排列多少条网线即LPI(Lines Per Inch)表示。在传统商业印刷制版过程中,制版时要在原始图像前加一个网屏,这一网屏由呈方格状的透明与不透明部分相等的网线构成。这些网线也就是光栅,其作用是切割光线解剖图像。由于光线具有衍射的物理特性,因此光线通过网线后,形成了反映原始图像影像变化的大小不同的点,这些点就是半色调点。一个半色调点最大不会超过一个网格的面积,网线越多,表现图像的层次越多,图像质量也就越好。因此商业印刷行业中采用了LPI表示分辨率。

  5.电视的分辨率
  在电视工业中,分辨率指的是在荧光屏等于像高的距离内人眼所能分辨的黑白条纹数,单位是电视线(TV线)。
  我们国家采用的电视标准是PAL制式,它规定每秒25帧,每帧625扫描行。由于采用了隔行扫描方式,625行扫描线分为奇数行和偶数行,这分别构成了每一帧的奇、偶两场,由于在每一帧中电子束都要从上面开始扫描,因此存在着电子束从终点回到起点的扫描逆程期,在这期间被消隐的扫描行是不可能分解图像的。扫描逆程期约占整个扫描时间的8%,因此625行中用于扫描图像的有效行数只有576行,由此推导出图像在垂直方向上的分辨率为576点。按现行4∶3宽高比的电视标准,图像在水平方向上的分辨率应为576×4/3=768点,这就得到了768×576这一常见的图像大小。另外,在计算机视频捕捉时,我们还会遇到遵循CCIR601标准的PAL制式图像尺寸,其大小为720×576。对于我们还能接触到的NTSC制式来讲,它规定每秒30帧,每帧525行,同样采用了隔行扫描方式,每一帧由两场组成,其图像大小是720×486。

  6.鼠标的分辨率
  鼠标的分辨率是指每移动一英寸能检测出的点数,分辨率越高,质量也就越高。以前鼠标的分辨率通常为100DPI,现在的鼠标分辨率从200DPI到400DPI不等。高分辨率的鼠标通常用于制图和精确计算机绘图等。

  7.触摸屏的分辨率
  触摸屏的分辨率是指将屏幕分割成可识别的触点数目。通常用水平和垂直方向上的触点数目来表示,如32×32。有的人认为触摸屏的分辨率越高越好,其实并非如此,在选用触摸屏时应根据具体用途加以考虑。采用模拟量技术的触摸屏分辨率很高,可达到1024×1024,能胜任一些类似屏幕绘画和写字(手写识别)的工作。而在多数场合下,触摸技术的应用只是让人们用手触摸来选择软件设计的“按钮”,没有必要使用如此高的分辨率。例如在14英寸显示器上使用触摸屏时,显示区域的实际大小一般是25cm×18.5cm,一个分辨率为32×32的触摸屏就能把屏幕分割成1024个0.78cm×0.58cm(比一支香烟还细小)的触点。人的手指按压触摸屏的触点比香烟的直径大多了,所以这样一个触点就已经足够了。
点(Dot)与像素(Pixel)的区别
  DPI中的点(Dot)与图像分辨率中的像素(Pixel)是容易混淆的两个概念, DPI中的点可以说是硬件设备最小的显示单元,而像素则既可是一个点,又可是多个点的集合。在扫描仪扫描图像时,扫描仪的每一个样点都是和所形成图像的每一个像素相对应的,因此扫描时设定的DPI值与扫描形成图像的PPI值是相等的,此时两者可以划等号。但在许多情况下,两者的区别是相当大的。比如,分辨率为1 PPI的图像,在300DPI的打印机上输出,此时图像的每一个像素,在打印时都对应了300×300点。在计算机显示器的运用上也存在类似问题,比如12英寸显示器的有效显示区域约200mm×160mm,如果荧光屏的光点直径为0.31mm,通过换算可知荧光屏上最大可显示的光点数为640(200÷0.31)×480(160÷0.31),相应的分辨率为80DPI。这个80DPI是这样来的:640Dot÷(200mm÷25.3995mm/Inch)≈80Dot/Inch或者 480Dot÷(160mm÷25.3995mm/Inch)≈80Dot/Inch 。
  在这种情况下,显示卡的显示模式最高可设置为640×480,这时1 Pixel由1 Dot组成。如把显示卡的显示模式调整为320×200,在显示一幅320×200的图像时,一个像素就要对应于四个光点。

图像分辨率的作用
  表示图像分辨率的方法有很多种,这主要取决于不同的用途。下面所要探讨的,就是在各种情况下分辨率所起的作用,以及它们相互间的关系。

  1.平面设计中分辨率的作用
  在平面设计中,图像的分辨率以PPI来度量,它和图像的宽、高尺寸一起决定了图像文件的大小及图像质量。比如,一幅图像宽8英寸、高6英寸,分辨率为100PPI,如果保持图像文件的大小不变,也就是总的像素数不变,将分辨率降为50PPI,在宽高比不变的情况下,图像的宽将变为16英寸、高将变为12英寸。打印输出变化前后的这两幅图,我们会发现后者的幅面是前者的4倍,而且图像质量下降了许多。那么,把这两幅变化前后的图送入计算机显示器会出现什么现象呢?比如,将它们送入显示模式为800×600的显示器显示,我们会发现这两幅图的画面尺寸一样,画面质量也没有区别。对于计算机的显示系统来说,一幅图像的PPI值是没有意义的,起作用的是这幅图像所包含的总的像素数,也就是前面所讲的另一种分辨率表示方法:水平方向的像素数×垂直方向的的像素数。这种分辨率表示方法同时也表示了图像显示时的宽高尺寸。前面所讲的PPI值变化前后的两幅图,它们总的像素数都是800×600,因此在显示时是分辨率相同、幅面相同的两幅图像。读者不妨尝试一下这个例子。

  2.印刷输出时分辨率的作用
  在计算机中处理的图像,有时要输出印刷。在大多数印刷方式中,都使用CMYK(品红、青、黄、黑)四色油墨来表现丰富多彩的色彩,但印刷表现色彩的方式和电视、照片不一样,它使用一种半色调点的处理方法来表现图像的连续色调变化,不像后两者能够直接表现出连续色调的变化。为了方便理解半色调点的处理方法,我们下面都以黑白照片的处理加以分析。用放大镜仔细观察报纸上的照片,可以发现这些照片都是由黑白相间的点构成的,而且由于点的大小有所不同使照片表现出了黑白色调的变化。那么,这些大小不同的点是怎样形成的呢?这个问题的答案可从传统的印刷制版过程原理中找到。根据印刷行业的经验,印刷上所有的LPI值与原始图像的PPI值有这样的关系,即PI值=LPI值×2×印刷图像的最大尺寸÷原始图像的最大尺寸。
  一般说来,只有遵循这一公式,原始图像才能在印刷中得到较好地反映。印刷中采用的LPI值较为固定,通常报纸印刷采用75LPI,彩色印刷品使用150LPI或175LPI,因此在1∶1印刷的情况下,针对不同用途,原始图像的分辨率应分别是150PPI、300PPI和350PPI。实际上,我们常用的桌面打印机也大多采用了半色调点的处理方法,上述公式同样也是适用的,但在打印过程中它们并没有使用一个物理网屏,而是靠数学计算来实现半色调点的处理。在这些打印机中产生的一个半色调点,要靠许多打印点来组成,显然构成一个半色调点的打印点越多,它所能表现的灰度变化范围就越大。比如要模拟256级灰度变化,就需要有16×16=256个打印点构成一个半色调点。但从另一方面看,对于常用的360DPI的打印机来说,此时的行屏幕也就是网线仅为360/16=22.5行,这使得打印图像中的行十分明显,同样影响了图像质量。为此,大多数打印机采用了8×8的半色调图案,相应的行屏幕为45LPI。通过公式可算出,对于这些打印机来说,打印图像的分辨率应为90PPI。

  3.电视工业中分辨率的作用
  在电视工业中,分辨率分为水平分辨率和垂直分辨率,在大多数情况下两者是相等的,因此在技术指标中一般仅给出水平分辨率,其度量单位电视线也往往简称为线。从前面的定义中可知,这种分辨率是以人眼的感觉为标准的,因此要靠大量的实验统计才能得出。按我们国家现行的电视标准,宽高比为4∶3,扫描行数为625行。去掉扫描逆程期,有效扫描行数是576行,相应的有效像素为768×576(720×576),因此768×576(720×576)也是电视图像与数字图像相互转换的标准。但此时的分辨率也可说是电视系统的极限分辨率,为625×0.7=438线。
  由此也可看出,有效像素数与分辨率中的黑白条纹数并不是1∶1的对应关系。影响分辨率的因素有很多,通常以电视设备中亮度信号的频带宽度×80线/MHz来估算分辨率的大小。比如,我们广泛使用的视频捕捉卡,其模拟信号的带宽最好的也就是5MHz,因此其分辨率也就是400线。电视设备的分辨率总的来说是较低的,家用VHS型录像机的分辨率仅略高于250线,电视机与计算机显示器也无法相提并论,电视机的点距(相当一光点直径)一般为0.6mm~0.8mm,其DPI值在40以下,一台29英寸电视机的分辨率仅在410线左右。值得一提的是,某些国外厂家在电视机产品宣传中声称水平分辨率达到800线,这纯属无稽之谈。如果一幅电视图像要硬拷贝输出,几乎所有软件都将其相应的数字图像的分辨率设为72PPI,这也从另一方面说明了电视图像的质量水平。
  总的说来,设备分辨率反映了硬件设备处理图像时的效果,图像分辨率指标的高低反映了图像清晰度的好坏。认清设备分辨率和图像分辨率的关系,在图像处理中选择合适的设备分辨率值和图像分辨率值,既能保证图像质量,又能提高工作效率和减少投资。在工作中我们应注意积累这方面的经验。

显示器常用名词解释

显像管类型

大体上讲,现在显像管分球面显像管和纯平显像管两种。所谓球面是指显像管的断面就是一个球面,这种显像管在水平和垂直方向都是弯曲的。而纯平显像管无论在水平还是垂直方向都是完全的平面,失真会比球面管小一点。现在真正意义上的球面管显示器已经绝迹了,取而代之的是“平面直角”显像管,平面直角显像管其实并不是真正意义上的平面,只不过显像管的曲率比球面管小一点,接近平面,而且四个角都是直角而已,目前市场上除了纯平显示器和液晶显示器外都是这种球面管显示器,由于价格大多比较便宜,因此在低档机型中被大量采用。

显像管品牌

现在市面上主流纯平CRT显示器所采用的是显像管主要包括LG“未来窗”,三星“丹娜管”,索尼“特丽珑”,三菱“钻石珑”,台湾“中华管”和日立“锐利珑”等。各个厂商的纯平显像管在技术上均有其独到之处,在性能上也是各有特色。下面详细介绍主要几种:

LG“未来窗”:“物理纯平”的代表LG认为真正的纯平显示器就应是外表面平面、内表面平面和荫罩平面都是绝对的平面,画面没有任何扭曲变形。其独有的未来窗(Flatron)显像管使用了创新的拉伸式沟状荫罩,它比起传统点状荫罩来间隙更多,可得到更大的电子流通量,让更多的光线到达屏幕,从而获得更亮更清晰的画面;而沟状荫罩网面比起Sony特丽珑(Trinitron)栅状荫罩来,在栅条中间又多了许多细小的横格,这使得荫罩网面的受力及稳定情况更好。
在提高画面清晰度方面,未来窗还加入了动态电子枪技术,减少垂直长度,防止屏幕四个角的水平分辨率降低和摩尔纹。不过物理纯平在强调100%完全平面的同时,却无法回避由于玻璃折射等造成的视觉上实际图像显示向内凹陷的事实,这让很多用户在刚使用时会感到些须的不适应。

三星“丹娜管”:三星生产的纯平“DynaFlat”是市场上常见的纯平管,拥有众多的用户。三星丹娜虽然推出的时间相对较迟,但其技术却很成熟,全部采用了三星电子独有的“内表面球形曲面补偿技术”,包括防静电无反光复合涂层、压缩荫罩、内部防尘/防辐射保护罩、它的水平点距达到0.20mm,垂直点距为0.25mm,综合的实际点距0.24mm。三星纯平最有特色的地方就是提供了RGB三原色输入,可十分方便的调节颜色的纯度,加强信号的稳定性。然而三星纯平管也有它的弱点就是显示屏四个角上的显示效果不如正中间的。

SONY“特丽珑”:SONY(索尼)是绝对的显像管业界的龙头老大,其开发的显像管称之为“Trinitron”(特丽珑)。目前SONY面向普通市场的显像管称之为“短颈特丽珑”(FD Trinitron)。
FD Trinitron采用了先进的单枪三束电子枪和荫栅(Aperture Grille)技术,这也是特丽珑最明显的技术特征。为了显示彩色图像,一般显像管是通过三支电子枪来分别击打不同颜色的像素点,而FD Trinitron则采用同一根电子枪来发射三束电子束。采用单枪三束的好处是可以获得非常优秀的色彩表现力、色彩鲜艳、细腻有丰润感,色纯度和色平衡更加容易调节。但是由于是单枪结构,对扫描和电子束的控制电路的要求也就更高了。
FD Trinitron的另外一个特点就是不采用荫罩结构,而使用“荫栅”。荫栅的构造是将互相平行的垂直铁线阵列安装在一个张力非常大的铁框内,与传统的孔状荫罩结构相比,采用荫栅的好处有以下几点:首先是拥有更加精细的栅距(点距),这使图象的效果更加细腻。其次,荫栅的结构使电子束的透过障碍最小,让图像更加光亮清晰。最后,荫栅的结构避免了传统的荫罩在高亮度画面或长时间使用时容易发生的因电子束通过Mask障碍较大,过多的电子撞击荫罩,产生热量导致温度上升,造成荫罩变形而影响色纯度和亮度,致使还面发生色彩失真和明暗不均等问题。不过,为了保证这么多垂直排列的铁丝不变形,FD Trinitron显像管中需要用两根“阻尼线”来起固定作用,因此FD Trinitron显像管的屏幕上会有两根细小的线。

三菱“钻石珑”:三菱在显像管业界也是属于元老级人物。当SONY推出特丽珑显像管时,三菱就迅速推出了同样有先进技术含量的钻石珑与之对抗。三菱钻石珑也是采用栅状荫罩的显像管,从技术上来看和SONY的FD Trinitron类似,区别在于钻石珑使用的不是单枪三束,而是三枪三束技术。因为配置了重新设计的NX-NX DBF电子枪,画质得到了进一步改善,特别是边角部分的聚焦及失真控制的很好。
如今三菱推出了最新的“DiamondTRON M2”显像管,它不仅秉承了上一代的钻石珑显像技术的图像细腻、色彩逼真、清晰自然的传统优点,并且通过所在上一代的基础上进行了一系列的技术改良,使其发挥更为出色,而且在普通的电压下的亮度大幅度提升,实现了文本、图像等多方面综合显示的整体的清晰自然。

接口类型
显示器通常有15针D-Sub和DVI接口两种:

15针D-Sub输入接口:也叫VGA接口,CRT彩显因为设计制造上的原因,只能接受模拟信号输入,最基本的包含R\G\B\H\V(分别为红、绿、蓝、行、场)5个分量,不管以何种类型的接口接入,其信号中至少包含以上这5个分量。大多数PC机显卡最普遍的接口为D-15,即D形三排15针插口,其中有一些是无用的,连接使用的信号线上也是空缺的。除了这5个必不可少的分量外,最重要的是在96年以后的彩显中还增加入DDC数据分量,用于读取显示器EPROM中记载的有关彩显品牌、型号、生产日期、序列号、指标参数等信息内容,以实现WINDOWS所要求的PnP(即插即用)功能。

DVI数字输入接口:DVI(Digital Visual Interface,数字视频接口)是近年来随着数字化显示设备的发展而发展起来的一种显示接口。普通的模拟RGB接口在显示过程中,首先要在计算机的显卡中经过数字/模拟转换,将数字信号转换为模拟信号传输到显示设备中,而在数字化显示设备中,又要经模拟/数字转换将模拟信号转换成数字信号,然后显示。在经过2次转换后,不可避免地造成了一些信息的丢失,对图像质量也有一定影响。而DVI接口中,计算机直接以数字信号的方式将显示信息传送到显示设备中,避免了2次转换过程,因此从理论上讲,采用DVI接口的显示设备的图像质量要更好。另外DVI接口实现了真正的即插即用和热插拔,免除了在连接过程中需关闭计算机和显示设备的麻烦。现在大多数液晶显示器都采用该接口。

显示尺寸和面积

显示尺寸指显像管的可见部分的对角线尺寸。最大可视面积就是显示器可以显示图形的最大范围,显示面积都会小于显像管面积的大小。显像管的大小通常以对角线的长度来衡量,以英寸单位(1英寸=2.54cm),常见的有15英寸、17英寸、19英寸、20英寸几种。15英寸显示器的可视范围在13.8英寸左右,17英寸显示器的可视区域大多在15~16英寸之间,19英寸显示器可视区域达到18寸英寸左右。
栅距和点距

点距:指屏幕上相邻两个同色像素单元之间的距离,即两个红色(或绿、蓝)像素单元之间的距离。从原理上讲,普通显像管的荧光屏里有一个网罩,上面有许多细密的小孔,所以被称为“荫罩式显像管”。电子枪发出的射线穿过这些小孔,照射到指定的位置并激发荧光粉,然后就显示出了一个点。许多不同颜色的点排列在一起就组成了五彩缤纷的画面。
由此可见,荫罩上有多少小孔是至关重要的,孔越多组成画面的点也越多,画面就越精细。荫罩上一共有多少个点,一方面是由显像管的尺寸所决定的,在不考虑其它因素的情况下,17英寸比15英寸的显像管多30%的孔,也就提高了30%的画面精度。不过只要缩小荫罩上两个小孔之间的距离,也就是提高单位面积的小孔数量,同样能提高画面的精度。
点距的单位为毫米(mm)。但是点距有许多种不同的测量方法,点距有实际点距、垂直点距和水平点距的差别。垂直点距等于三个同色荧光点组成三角形斜线距离的一半,等同于点距(边长)的一半。而水平点距实际上是这个三个同色荧光点组成三角形的高,我们知道,等边三角形的高小于边长,因此,水平点距小于实际点距。这也就是一些显示器厂商把水平点点距说成实际点距,以提高产品档次的原因了,大家在购买的时候需要清楚厂商资料中指出的是水平点距还是实际点距。
以17寸,0.28mm点距显示器为例,它在水平方向最多可以显示1024个点,在竖直方向最多可显示768个点,因此极限分辩率为1024*768。超过这个模式,屏幕上的相邻像素会互相干扰,反而使图像变动模糊不清。目前点距主要有0.39,0.31,0.28,0.26,0.24,0.22mm等几种规格,最小的可达0.20mm。一般来讲,小的点距和良好的汇聚性能相结合,才能达到更好的显示效果。

栅距:由于SONY推出的特丽珑显像管采用了栅状荫罩,因此引入了栅距的概念。栅距是指荫栅式像管平行的光栅之间的距离(单位:mm)。它的代表就是“特丽珑”和“钻石珑”等高档次显示器,采用荫栅式显像管的它的好处在于其栅距在长时间里使用也不会变形,显示器使用多年也不会出现画质的下降,而荫罩式正好相反,其网点会产生变形,所以长时间使用就会造成亮度小降,颜色转变的问题。另一方面由于荫栅式可以透过更多的光线,从而可以达到更高的亮度和对比度,令图像色彩更加鲜艳逼真自然。
凭肉眼看同档次的孔状荫罩和荫栅式荫罩两种类型的显示器,显示效果的区别不算大。但从理论和应用上讲,孔状荫罩显示器显示的图像更精细准确,适合CAD/CAM的应用;荫栅式荫罩显示器的色彩要明亮一些(屏幕受到电子束激发的面积略大),更适合于艺术专业的应用。
在点距这个指标上,从日常的应用看,0.28mm点距的孔状荫罩显示器和0.25mm栅距的荫栅式荫罩显示器已经达到要求,除非特殊作图的需要,一般使用没有必要追求更小点距的显示器。

扫描频率

扫描频率是场频和行频的统称
场频:场频又称为“垂直扫描频率”或“刷新率”。指单位时间(以秒计)之内电子枪对整个屏幕进行扫描的次数,通常以赫兹(Hz)表示。以85Hz刷新率为例,它表示显示器的内容每秒钟刷新85次。
CRT显示器上显示的图像是由很多荧光点组成的,每个荧光点都由于受到电子束的击打而发光,不过荧光点发光的时间很短,所以要不断地有电子束击打荧光粉使之持续发光。电子束不能同时轰击屏幕上的两个点,因此显示器在工作时,以极快的速度从视频卡读取数据,同时由电子枪的偏转电路部分控制偏转线圈对电子束射出的方向进行改变,使电子束从屏幕左上角开始,从左至右,从上至下,依次对每个点进行轰击,虽然时间上有先后顺序,但由于电子束把屏幕整个扫描一次只需10~20ms的时间,加上荧光体的辉光残留和人眼的视觉暂留现象,所以只要刷新够快,刷新率够高,人眼就能看到持续、稳定的画面,不会感觉到明显的闪烁和抖动。垂直扫描频率越高,闪烁情况越不明显,眼睛也就越不容易疲劳。
从理论上来讲,只要刷新率达到85Hz,也就是每秒刷新85次,人眼就感觉不到屏幕的闪烁了,但实际使用中往往有人能看出85Hz刷新率和100Hz刷新率之间的区别,所以从保护眼睛的角度出发,刷新率仍然是越高越好。
行频:行频又称为“水平扫描频率”,指电子枪每秒在荧光屏上扫过的水平线的数量,其值等于“场频 × 垂直分辨率×1.04”,单位为KHz(千赫兹)。行频是一个综合分辨率和场频的参数,该值越大,显示器可以提供的分辨率越高,稳定性越好。以800*600的分辨率、85Hz的场频为例,显示器的行频至少应为“600*85=51KHz”。目前CRT显示器比较主流的行频系列是:70KHz,85(86)KHz,96KHz等。

分辨率

分辨率(resalution)就是屏幕图像的精密度,是指显示器所能显示的点数的多少。由于屏幕上的点、线和面都是由点组成的,显示器可显示的点数越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。
以分辨率为1024×768的屏幕来说,即每一条水平线上包含有1024个像素点,共有768条线,即扫描列数为1024列,行数为768行。分辨率不仅与显示尺寸有关,还受显像管点距、视频带宽等因素的影响。其中,它和刷新频率的关系比较密切,严格地说,只有当刷新频率为“无闪烁刷新频率”,显示器能达到最高多少分辨率,才能称这个显示器的最高分辨率为多少。
按照水平和垂直像素数目来区分,则可以分:320×200,640×480,800×600,1024×768,1280×1024,1600×1200等几种。一般来讲,17英寸CRT显示器的最佳分辨率还是1024×768,19英寸CRT显示器则为1280×1024。对于CRT显示器,它支持的分辨率越多和越大,它的应用范围也就越广,价格也就相应要高一些。

带宽

带宽是显示器视频放大器通频带宽度的简称,指电子枪每秒钟在屏幕上扫过的最大总像素数,以MHz(兆赫兹)为单位。从表面上看,只需用行频乘以水平分辨率就可以得到带宽。但实际上,电子枪在扫描时扫过水平方向上的像素点数与垂直方向上的像素点数均高于理论值,这样才能避免信号在扫描边缘衰减,使图像四周同样清晰。
水平分辨率大约为实际扫描值的80%,垂直分辨率大约为实际扫描值的93%,所以带宽的计算公式为:带宽=水平分辨率/0.8×垂直分辨率/0.93×场频。或带宽=水平分辨率×垂直分辨率×场频×1.344。例如:在1024×768@85Hz的模式下,带宽为1024×768×85×1.344=89.84199868mhz。 带宽的值越大,显示器性能越好。
带宽越高,惯性越小,响应速度越快,允许通过的信号频率越高,信号失真越小,它反映了显示器的解像能力。与行频相比,带宽更具有综合性也更直接的反映显示器的性能。它造成显示器性能差异的一个比较重要的因素。
带宽决定着一台显示器可以处理的信息范围,就是指特定电子装置能处理的频率范围。工作频率范围早在电路设计时就已经被限定下来了,由于高频会产生辐射,因此高频处理电路的设计更为困难,成本也高得多。而增强高频处理能力可以使图像更清晰。所以,宽带宽能处理的频率更高,图像也更好。每种分辨率都对应着一个最小可接受的带宽。如果带宽小于该分辨率的可接受数值,显示出来的图像会因损失和失真而模糊不清。
下表列出了在几种常见分辨率和刷新频率下的可接受带宽:


亮度和高亮

亮度:是指画面的明亮程度。广义上的亮度,除了包括普通的亮度因素,同时还包括色彩的饱和度和艳丽度。亮度的单位是cd/m2 。
高亮:“高亮”对于CRT显示器来说是近年才被提起的,目前CRT显示器高亮标准为:第一,最高亮度能达到300cd/m2以上。第二,亮度的提升并不单纯地通过显示器的亮度调节按钮、加大显示器驱动电路电流的输出,把屏幕弄得发白,而是在亮度提高的同时,对比度、色彩的饱和度等也随着亮度一起提高,从而给用户提供一个鲜明亮丽清晰的画面。下面列举其中几个各显示器厂推出显示器高亮技术:

1、三星MagicBright高亮技术 :三星MB(Magic Bright)高亮技术是基于三星DynaFlat视觉纯平技术,融合电路设计、集成化制造、纳米材料、表面涂覆等领域的结晶。在CRT显示器中,往往由于提高亮度而使聚焦表现下降,出现画面发虚的现象。三星MB系列通过改进的驱动电路和更精巧的偏转线圈设计,彻底解决这样的问题,在最高亮度模式下仍然保证原画面尺寸的精确显示。

2、飞利浦显亮(LightFrame )技术:飞利浦显亮技术由一组软件应用程序和一个在监视器中的集成电路所组成,软硬结合让用户所定义的窗口或屏幕区域内增强亮度与鲜明度。飞利浦的显亮有智能化,可以自动侦测网页上的图片及影像并对其进行优化,还可以通过随机赠送的软件设置,让用户需要进行高亮度优化的程序在开启的时候自动激活显亮功能。

3、SONY高亮技术:Sony高亮技术有:1、精确细致的显示屏栅极和最细腻的萤光点距:显像管采用SONY专利的金属线荫栅屏,栅距达到0.24mm,使电子束穿透障碍最小、发热量最小、变形度最小;同时同色源萤光点的点距同样为0.24mm,故显示器的画面更细腻,文本更清晰。2、有最小的电子束射出罩门孔:SONY高亮特丽珑显像管电子束射出罩门孔缩小为0.32mm,它可以使电子束击打萤光粉的控制能力与准确度大大提升,图像逼真清晰。3、超精确聚焦控制:Sony高亮运用DQL及EFEAL多重散光聚焦系统配合抗眩光黑晶涂层,使透光率提高38%;此外还使用4~6层先进萤幕涂层,提高显像管的对比度与聚集准确度,色纯度、色彩鲜亮度以及影像传真度大幅提升。

4、三菱M2 高亮技术:三菱的M2高亮度显像管也是主要采用在那些定位中等偏高一些市场定位的产品上。作为荫栅式纯平显像管的代表者,Diamondtron 拥有优越的技术和图像文字显示效果,三菱Diamondtron 显像管在单枪三束上做出改良,采用三支电子枪,分别同步射出R(红)、G(绿)、B(蓝)三原色,因而得名为三枪三束,这样可免除由一支电子枪射出三原色时引起的信号相互干扰现象。再加上三组电子透镜的配合,能独立对三原色进行调整,使三原色电子束打击荧光粉更准确。另外与自然平面技术以及其他三菱独有的专利技术紧密配合,使显示图像自然平面,线条细腻,文字清晰,颜色生动。配以高稠密间隙隔栅(AG),令透光率更为提升,显示效果突出。
Diamondtron M2主要从以下几方面做出改良:阴极断点电压和栅压分别从以前的115V和700V降低到65V和560V,令显示效果更稳定;栅栏直径从φ0.4mm降到φ0.35mm,令线条更细致,文字更锐利;栅栏厚度0.44mm降到0.38mm,令透光率大幅度提升,色彩更逼真;亮度是以前的100cd/m2的3倍提升到300cd/m2的幅度,相比LCD更为明亮,适合平面立体绘图设计、多媒体应用等。

安规认证

对显示器来说最重要的安规认证是电磁幅射标准,即指限制显示器所发出的电磁幅射量的国际标准。目前有两项重要的标准是由下列两个瑞典权威机构所定出来的规则:MPR-II,原先是一项由瑞典劳工部所提出的标准,制定了显示器所放出的电磁幅射量的最高范围,现在已被采用为世界标准。TCO,瑞典TCO组织于1991年制定了一个比MPR-II更严格的标准,特别是为交流电场(aef)而定。

MPR认证

MPR标准是由SWEDAC(Swedish National Board For Measurement And Testing瑞典国家技术部)制订的电磁场辐射规范(包括电场、静电场强度)。包括有著名的MPR I、MPR II。MPR I诞生于1987年,是由瑞典国家测量测试局就电场和磁场对人体健康的影响而提出的一个标准,目前这个标准已经显得比较宽松了。1990年,MPR I进一步扩展变成了MPR II,进一步详细列出了21项显示器标准,包括闪烁度、跳动、线性、光亮度、反光度及字体大小等,对ELF(超低频)和VLF(甚低频)辐射提出了最大限制,已经成了一种比较严格的电磁辐射标准。现在市场上被认为的低辐射显示器,一般都符合这一标准。

TCO认证

所谓的TCO标准保证,是由瑞典专业雇员联盟(Swedish Confederationof Professional Employess)推出的。随着不断扩充和改进,逐渐演变成了现在通用的世界性标准,引起了显示器生产厂商的广泛重视。它不仅包括辐射和环保的多项指标,还对舒适、美观等多方面提出严格的要求。
TCO认证自从1991年推出以后,主要面向质量和环境,对象则主要是办公室里常见的电子设备,如手提式计算机、显示器、键盘、系统机、打印机等,并且为移动电话也颁布了一个新的标准“TCO'01 Mobile Phones”。连同前段时间发布的TCO'03 Displays标准,面向计算机监视器及外设的TCO认证一共走过了四代不同的标准(面向移动电话的TCO'01标准不算在其中),从TCO’92、TCO’95、TCO’99到TCO'03,随着时间的推移以及人们健康、环保意识的加强,加之科技进步所能带来的产品质量改观,TCO认证标准也一代比一代更为严格。
截止2003年5月27日,通过了TCO’92(该项认证已经停止)认证的显示器型号有1050个,通过了TCO’95与TCO’99认证的显示器型号则分别高达2085个和2286个;而通过最新的TCO’03认证的显示器型号则为61个。

OSD菜单

OSD是on-screen display的简称,即屏幕菜单式调节方式。一般是按Menu键后屏幕弹出的显示器各项调节项目信息的矩形菜单,可通过该菜单对显示器各项工作指标包括色彩、模式、几何形状等进行调整,从而达到最佳的使用状态。

什么是CE认证

1985年5月7日,欧洲理事会批准了85/C136/01关于《技术协调与标准化新方法》的决议。该决议指出,在《新方法》指令中只规定产品所应达到的卫生和安全方面的基本要求,另外再以制定协调标准来满足这些基本要求。协调标准由欧洲标准化组织制定,凡是符合这些标准的产品,可被视为符合欧盟指令的基本要求。换句话说就是此产品获得了进入欧洲的“通行证”,可以在欧洲市场销售。

通常情况下,所有新方法指令都规定了加贴“CE”标志的基本要求。这些基本要求是保护公共利益所必须达到的基本要素,特别是对保护用户,如消费者和工人的卫生和安全,涉及到保护财产或环境等其他方面的基本要求做出了规定。基本要求目的是为用户提供并确保高标准的保护。这些要求中有些涉及到与产品有关的某些危险因素,如机械阻力、易燃性、化学性质、生物性质、卫生、放射性和精确度;或是涉及到产品的性能,如关于材料、设计、建筑、生产过程、制造商编写说明书的规定;或是以列表形式规定主要的保护目标;更多的是上述几种方法的结合。如果某一产品存在固有的危险,制造商有必要进行危险程度分析,以确定适用于其产品的基本要求,这些分析应编写成文件并放入技术文件中。基本要求规定了要达到的结果,或涉及到的危险程度,但并不指明或预测技术解决方案,这种灵活性给制造商提供了自由选择满足基本要求的方法,这样做可使制造商充分选择适合技术进步的材料或产品设计。

指令的基本要求提供技术规范的欧洲标准,是在欧洲委员会一致通过的基础上由标准化组织批准的。这种标准被称为“协调标准”,它是满足指令基本要求的“快速跑道”。协调标准具有“据此推断符合基本要求”的地位,是制造商证明产品符合指令基本要求的一种工具,也就是说,符合协调标准的产品即可在欧盟市场流通,但实施协调标准仍是自愿的。

协调标准不仅涉及基本要求的相关条款,还可能涉及其他规定,但在实施中制造商应将其他规定与基本要求区分开。有时,某一协调标准没有涉及其所对应指令的所有基本要求,在这种情况下,制造商应采用其他的技术规范,以保证符合指令的基本要求。

依据欧洲标准化组织的规定,各成员国必须将协调标准转换成国家标准,并撤销有悖于协调标准的国家标准,这一点是强制性的。协调标准在欧洲标准中并没有单列为一类,其标题、代号等应发布在欧盟官方公报(Official Journal)上,并指明与其相对应的新方法指令。

什么是FCC认证

电子产品产产生的噪声可干扰无线电接收,噪音还可通过空间或电线向四周辐射,所以必须对电磁干扰进行限定。由美国联邦通信委员会颁发的FCC认证就制定了电磁方面的规范,它对数字设备及开关电源等发出的辐射噪音量进行了限定。FCC认证可以在美国或世界各地的授权实验室进行检测。

1996年,美国联邦通信委员会提出了与电脑相关的FCC认证,容许电脑部件可单独申请检测,而不需要采取整机的认证方式。这极大的促进了组装市场的发展,普通用户购买时只需要确定电脑(如主板、键盘、显示器等)是否通过了FCC认证即可。测试主板是否符合FCC标准,应先拆卸机箱再用47 CRT 15.31标准进行测试。若主板通过测试,即意味着该主板具备了的辐射的特性,可使用各种材质的机箱进行组装。

FCC认证一般出现在能产生高频信号的电脑配件上。FCC认证分为A和B两类,B类技术要求更加严格。A类产品适用于对无线电和电视接收干扰较小的地区,因此不能在B类地区使用。而B类产品适用于使用电视和收音机的地区,如家庭和住宅区。当然B类产品也可以在A类地区使用。

笔记本电脑和CD机需要符合B类限制规定,而在美国销售的电子产品也都必须通过B类认证。计算机相关设备的审批方法一般只需要经过FCC批准实验室出具的检测报告即可。而更严格的审批方法不仅要通过FCC批准的实验室的检测,产品销售前还需获得FCC批准代号,该过程所需时间最长。

看过上面的这些标准,你可能会问,这些标准与我购买电脑又有什么关系呢?其实,说起来很简单。我们所买的电脑之中,所有零件从设计到生产,再到组装好卖到消费者手中,这之间的每一道工序,都是要尽量符合上述几种标准的。(比如:一个整机的生产厂商,首先,他们所设计的产品要符合IEC标准规范,接着,他的生产厂和组装厂要符合ISO 9000族标准,其中所有生产步骤都是要按ISO 9001/2/3质量保证标准来要求的,而管理层则符合ISO 9004 质量管理标准,最后,整机再能让ISO 14000系列标准承认,我们就说他的产品是一个绿色的对人体危害较小的电脑。)否则,就不能保证他的所有产品质量合格或质量信的过。要知道,很多小公司的产品迟迟不能得到这些标准化协会的承认,就是因为产品合格率不能尽如人意,自然产品的声望也就没有其他大公司的产品大了。

什么是MPRⅡ认证

这是由瑞典技术委员会制定的关于电磁辐射的规范。它面向普通工作环境设计,将显示器周围的电磁辐射降低到一个合理的范围。除少量廉价产品外,目前销售的大多数显示器都符合MPRⅡ规范。

什么是TCO认证

TCO认证是由瑞典专家委员会制定的世界上关于显示器环保要求的最严格标准之一。  

该认证包含了相当大范围的问题:环境保护、生物工程、可用性、电磁场、能源消耗和电力火力安全。环保要求涉及到限制重金属、溴化和氯化阻燃剂、氟里昂及氯化溶剂的存在和使用。电脑中多达30%的塑料包装可能有含溴阻燃剂。这些材料和另一类环境毒素——PCB有关,怀疑可能对哺乳动物的生殖能力有损害。石墨可以在显示屏、显像管和电容中找到。它损害神经系统,并且较高剂量可以导致石墨中毒。镉在可充电电池和某些电脑显示器的色彩显像层中存在。镉损害神经系统,高剂量时有毒。能源要求包括电脑和显示器在不工作一段时间后能分一步或几步将能源消耗降低到一个较低的水平,但重新激活电脑的时间应在合理范围内。  

目前共有TCO92,TCO95和TCO99三项标准。  

TCO92   

见到这个标签,表示显示器已通过了TCO92认证。我们称之为“环境标志”。 TCO92致力于降低电磁辐射、节省电力、防火和防电。

TCO95   

在TCO92的基础上又新增加了很多内容,主要包括画面控制、节能、电磁辐射控制、防火等内容,并严格规定了零件及原材料的再生利用标准,甚至规定了在生产线制造过程中不得使用危害环境的材料,加强了对人体工程学方面的要求。而且,TCO95是从系统的角度将各种射线控制在极低的范围之内,甚至连外壳都必须用无损健康的原料制造,堪称显示器环保与安全的典范。  

TCO99   

除TCO95的各项规定外,又增加了用户舒适性方面的要求。  

显示器为什么要过TCO认证?  

CRT显示器由于是采用一系列的电路设计而达到显示影像的目的,所以不可避免会产生辐射,辐射对人体的危害是极其严重的,另外在电脑的原料中也含有大量的有毒物质,这些物质均会不同程度的影响健康,TCO认证对显示器所有不利人体健康的因素均做了严格的控制,确保了用户健康不受侵害。

什么是3C认证

“3C”是“中国产品强制认证”(China Compulsion Certification)的英文缩写。2003年8月1日起,国家认监委对涉及人类健康安全、动植物生命安全和健康以及环境保护和公共安全的19大类132种产品实行统一的强制性产品认证制度,其中与市民生活息息相关的家电类产品几乎都在其中。“3C”认证是一种对产品的合格评定。