:Linux文件系统之文件的读写(续二)

来源:百度文库 编辑:九乡新闻网 时间:2024/04/28 17:08:59
------------------------------------------ 本文系本站原创,欢迎转载!转载请注明出处:http://ericxiao.cublog.cn/------------------------------------------八:VFS层的I/O操作VFS层是与用户界面直接交互的接口,在这一节里,我们将分为读写两部份来介绍VFS层的操作以及跟上层用用的交互.8.1:文件的读操作在用户空间,读文件操作的常用函数为read()。对应在系统空间的调用入口是sys_read().它的代码如下:asmlinkage ssize_t sys_read(unsigned int fd, char __user * buf, size_t count){     struct file *file;     ssize_t ret = -EBADF;     int fput_needed;      //根据fd从进程中取出相应的file对象     file = fget_light(fd, &fput_needed);     if (file) {         loff_t pos = file_pos_read(file);         //文件的当前位置         ret = vfs_read(file, buf, count, &pos);         //更新当前的文件位置         file_pos_write(file, pos);         fput_light(file, fput_needed);     }      return ret;}从进程中取得文件描述符后和文件当前的操作位置后会调用vfs_read()执行具体的操作过程.它的代码如下:ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos){     struct inode *inode = file->f_dentry->d_inode;     ssize_t ret;      if (!(file->f_mode & FMODE_READ))         return -EBADF;     if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))         return -EINVAL;//检查当前区段是否允许读操作     ret = locks_verify_area(FLOCK_VERIFY_READ, inode, file, *pos, count);     if (!ret) {         //是否有权限         ret = security_file_permission (file, MAY_READ);         if (!ret) {              //如果有read 操作,调用之              if (file->f_op->read)                   ret = file->f_op->read(file, buf, count, pos);              else                   //否则调用aio_read                   ret = do_sync_read(file, buf, count, pos);              //ret: 写入的字节数              if (ret > 0)                   //产生通告                   dnotify_parent(file->f_dentry, DN_ACCESS);         }     }      return ret;}从上面看到,会最终调用file的相关操作完成文件的读操作.曾记得我们在文件的打开一节中分析了文件的打开过程。在打开文件过程中,文件描述符的相关操作会被赋值为inode->f_op.对于ext2文件系统,inode的相关信息如下:         inode->i_fop = &ext2_file_operations;struct file_operations ext2_file_operations = {     .llseek       = generic_file_llseek,     .read         = generic_file_read,     .write        = generic_file_write,     .aio_read = generic_file_aio_read,     .aio_write    = generic_file_aio_write,     .ioctl        = ext2_ioctl,     .mmap         = generic_file_mmap,     .open         = generic_file_open,     .release = ext2_release_file,     .fsync        = ext2_sync_file,     .readv        = generic_file_readv,     .writev       = generic_file_writev,     .sendfile = generic_file_sendfile,}相应文件读操作入口为generic_file_read():ssize_tgeneric_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos){     //用户空间的地址和长度     struct iovec local_iov = { .iov_base = buf, .iov_len = count };     //记录完成状态          struct kiocb kiocb;     ssize_t ret;      //kiocb.ki_key=KIOCB_SYNC_KEY; kiocb.ki_filp=filp;kiocb.ki_obj=current;     init_sync_kiocb(&kiocb, filp);     //返回读写完成的字节数     ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);     //异步操作,需用等待     if (-EIOCBQUEUED == ret)         ret = wait_on_sync_kiocb(&kiocb);     //返回完成的字节数     return ret;}__generic_file_aio_read()是一个很重要的函数,它是读操作的入口。代码如下:ssize_t__generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,         unsigned long nr_segs, loff_t *ppos){     struct file *filp = iocb->ki_filp;     ssize_t retval;     unsigned long seg;     size_t count;      count = 0;     for (seg = 0; seg < nr_segs; seg++) {         const struct iovec *iv = &iov[seg];          /*          * If any segment has a negative length, or the cumulative          * length ever wraps negative then return -EINVAL.          */         count += iv->iov_len;         if (unlikely((ssize_t)(count|iv->iov_len) < 0))              return -EINVAL;         //检查从 iv->iov_base 开始的iov_len区间的合法性         if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))              continue;         if (seg == 0)              return -EFAULT;         //nr_seg: 有效的数据段数目         nr_segs = seg;         //上一个数据段无效,将其长度减下来         count -= iv->iov_len;  /* This segment is no good */         break;     }      /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */     //如果定义了O_DIRECT:直接传送数据`绕过了页高速缓存     if (filp->f_flags & O_DIRECT) {         loff_t pos = *ppos, size;         struct address_space *mapping;         struct inode *inode;          mapping = filp->f_mapping;         inode = mapping->host;         retval = 0;         if (!count)              goto out; /* skip atime */         size = i_size_read(inode);         if (pos < size) {              retval = generic_file_direct_IO(READ, iocb,                            iov, pos, nr_segs);              if (retval >= 0 && !is_sync_kiocb(iocb))                   retval = -EIOCBQUEUED;              if (retval > 0)                   *ppos = pos + retval;         }         file_accessed(filp);         goto out;     }       //count:读取文件的长度     retval = 0;     if (count) {         for (seg = 0; seg < nr_segs; seg++) {              //read_descriptor_t:读操作描述符`用来记录读的状态              read_descriptor_t desc;               desc.written = 0;              desc.arg.buf = iov[seg].iov_base;              desc.count = iov[seg].iov_len;              //如果没有要传输的数据`继续下一个iov              if (desc.count == 0)                   continue;              desc.error = 0;              //对其中的每一个段调用do_generic_file_read              do_generic_file_read(filp,ppos,&desc,file_read_actor,0);              //desc.written:写入到用户空间的字节数              //更新retval              retval += desc.written;              if (!retval) {                   retval = desc.error;                   break;              }         }     }out:     return retval;}这里有种特殊情况,当文件是用直接I/O模式打开时(文件描述符带有O_DIRECT标志),就会采用直接I/O而跳过了页高速缓区。这样的情况我们在之后再讨论.对于普通模块的情况。将会对每一个段调用do_generic_file_read()来完成I/O操作。这个函数的代码如下:do_generic_file_read()à do_generic_file_read():/*     mapping:      页高速缓存区     _ra:          filep对应的file_ra_state     filep:        打开的文件描述符     ppos:         当前的操作位置     desc:         读操作描述符     actor:        内核空间到用户空间的拷贝函数     nonblock: 如果此变量为1,则需要预读   */void do_generic_mapping_read(struct address_space *mapping,                   struct file_ra_state *_ra,                   struct file *filp,                   loff_t *ppos,                   read_descriptor_t *desc,                   read_actor_t actor,                   int nonblock){     struct inode *inode = mapping->host;     unsigned long index, end_index, offset;     loff_t isize;     struct page *cached_page;     int error;     struct file_ra_state ra = *_ra;      cached_page = NULL;     //找到页面的偏移量。即确定是存储在那个存面中     index = *ppos >> PAGE_CACHE_SHIFT;     //第一个请求字节在页面的偏移量     //亦即请求的字节在页面中的偏移     offset = *ppos & ~PAGE_CACHE_MASK;      //inode对应的文件大小     isize = i_size_read(inode);     if (!isize)         goto out;      //最后的缓存页序号     end_index = (isize - 1) >> PAGE_CACHE_SHIFT;     for (;;) {         struct page *page;         unsigned long nr, ret;          /* nr is the maximum number of bytes to copy from this page */         //nr: 缓存页空间大小         nr = PAGE_CACHE_SIZE;         if (index >= end_index) {              //index > end_indx: 肯定是非法的页面缓存器大小              if (index > end_index)                   goto out;               //执行到这里,肯定有index == end_index              //nr转化成了文件在最后一个缓存page中的位置              nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;              //offset是当前位置在页中的偏移,nr: 是最后一个块在磁盘中的偏移              //如果nr<=offset说明文件已经操作完了              if (nr <= offset) {                   goto out;              }         }          //nr-offset: 页面的剩余操作字节数         nr = nr - offset;          //检查当前进程是否设置了重新调度标志`如果有`调用schdule()重新调度一次         cond_resched();          //文件预读         if (!nonblock)              page_cache_readahead(mapping, &ra, filp, index); find_page:         //寻找当前位置对应的缓存页         page = find_get_page(mapping, index);         if (unlikely(page == NULL)) {              //没有找到对应的缓存页,说明在页缓存区中不存在此页面对应的缓存页              if (nonblock) {                   desc->error = -EWOULDBLOCKIO;                   break;              }              handle_ra_miss(mapping, &ra, index);              goto no_cached_page;         }          //在页缓存区中找到了相关的页面          //检查PG_uptodata标志是否被设置`如果这个标志被设置的话,就不需要从设备         //上去读取了         if (!PageUptodate(page)) {               //页面没有设置PG_uptodata`页面中的内容无效,所以要从文件系统中把数据读取出来              if (nonblock) {                   page_cache_release(page);                   desc->error = -EWOULDBLOCKIO;                   break;              }              goto page_not_up_to_date;         }page_ok:          /* If users can be writing to this page using arbitrary          * virtual addresses, take care about potential aliasing          * before reading the page on the kernel side.          */         if (mapping_writably_mapped(mapping))              flush_dcache_page(page);          /*          * Mark the page accessed if we read the beginning.          */         if (!offset)              mark_page_accessed(page);          /*          * Ok, we have the page, and it's up-to-date, so          * now we can copy it to user space...          *          * The actor routine returns how many bytes were actually used..          * NOTE! This may not be the same as how much of a user buffer          * we filled up (we may be padding etc), so we can only update          * "pos" here (the actor routine has to update the user buffer          * pointers and the remaining count).          */          //页面与用户空间的值拷贝.返回拷贝的数据数         ret = actor(desc, page, offset, nr);         offset += ret;         index += offset >> PAGE_CACHE_SHIFT;         offset &= ~PAGE_CACHE_MASK;          page_cache_release(page);         //如果ret == nr: 拷贝的长度等于在页面中的剩余长度,说明拷贝没有发生错误         if (ret == nr && desc->count)              continue;         //否则,可以退出了         goto out; page_not_up_to_date:         /* Get exclusive access to the page ... */         //要从文件系统中传数据到此页面上。将此页面锁定         lock_page(page);          /* Did it get unhashed before we got the lock? */         //有可能在锁页面的时候`有其它的进程将页面移除了页缓存区         //在这种情况下:将page解锁`并减少它的使用计数,重新循环```         //重新进入循环后,在页缓存区找不到对应的page.就会重新分配一个新的page         if (!page->mapping) {              unlock_page(page);              page_cache_release(page);              continue;         }          /* Did somebody else fill it already? */         //在加锁的时候,有其它的进程完成了从文件系统到具体页面的映射?         //在这种情况下,返回到page_ok.直接将页面上的内容copy到用户空间即可         if (PageUptodate(page)) {              unlock_page(page);              goto page_ok;         } //读取页面readpage:         /* Start the actual read. The read will unlock the page. */          //到这里的话,实际的读取过程开始了 ^_^         error = mapping->a_ops->readpage(filp, page);          //读取错误,退出         if (unlikely(error))              goto readpage_error;          //如果PG_uptodata标志仍然末设置.就一直等待,一直到page不处于锁定状态         // TODO: 在将文件系统的内容读入page之前,page一直是处理Lock状态的。一直到         //读取完成后,才会将页面解锁.    然后将进程唤醒         if (!PageUptodate(page)) {              wait_on_page_locked(page);               //如果页面仍然没有PG_uptodata标志.只可能是发生了错误.出错返回              if (!PageUptodate(page)) {                   error = -EIO;                   goto readpage_error;              }         }          /*          * i_size must be checked after we have done ->readpage.          *          * Checking i_size after the readpage allows us to calculate          * the correct value for "nr", which means the zero-filled          * part of the page is not copied back to userspace (unless          * another truncate extends the file - this is desired though).          */         isize = i_size_read(inode);         end_index = (isize - 1) >> PAGE_CACHE_SHIFT;          //如果文件大小无效或者当前位置超过了文件大小         if (unlikely(!isize || index > end_index)) {              page_cache_release(page);              goto out;         }          /* nr is the maximum number of bytes to copy from this page */         //重新计算nr 即在页面中剩余的要copy的字节数         nr = PAGE_CACHE_SIZE;         if (index == end_index) {              nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;              if (nr <= offset) {                   page_cache_release(page);                   goto out;              }         }         nr = nr - offset;         goto page_ok; readpage_error:         /* UHHUH! A synchronous read error occurred. Report it */         desc->error = error;         page_cache_release(page);         goto out; no_cached_page:         /*          * Ok, it wasn't cached, so we need to create a new          * page..          */          //在页缓区中没有相关的缓存页          //新分匹一个页面         if (!cached_page) {              cached_page = page_cache_alloc_cold(mapping);              if (!cached_page) {                   desc->error = -ENOMEM;                   goto out;              }         }          //将分得的页加到页缓存区和LRU         // TODO:在将新页面插入页缓存区域中,会将页面标志设置为PG_locked          error = add_to_page_cache_lru(cached_page, mapping,                            index, GFP_KERNEL);         if (error) {              if (error == -EEXIST)                   goto find_page;              desc->error = error;              goto out;         }         page = cached_page;         cached_page = NULL;         goto readpage;     } out:     *_ra = ra;      //ppos: 最后的读取位置     *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;     if (cached_page)         page_cache_release(cached_page);     if (filp)         file_accessed(filp);}如果参数为nonblock为1,则必须预读页面。在这里的调用nonblock为零,不需要考虑预读的情况。关于预读的操作,我们之后再给出分析.在这个操作中,有这样几种可能的情况:1:如果要访问的页面在页高速缓存中,而且已经被更新(含有PG_uptodata标志).只需要直接将其copy到用户空间即可.2:序号对应的页面不在高速缓存中,那就需要在页高速缓存中增加序号对应的页面。然后从文件系统中读取数据到这个页面上.再拷贝到用户空间。3:序号对应的页面在高速缓存中,但数据不是最新的.这就需要缓存页与文件系统进行同步.再将页面拷贝到用户空间.对于2和3。它们有一部份是相同的,即从文件系统中读数据的过程。我们只需要分种对于第2的情况。对应的代码片段如下:void do_generic_mapping_read(struct address_space *mapping,                   struct file_ra_state *_ra,                   struct file *filp,                   loff_t *ppos,                   read_descriptor_t *desc,                   read_actor_t actor,                   int nonblock){     ……     page = find_get_page(mapping, index);         if (unlikely(page == NULL)) {              //没有找到对应的缓存页,说明在页缓存区中不存在此页面对应的缓存页              if (nonblock) {                   desc->error = -EWOULDBLOCKIO;                   break;              }              handle_ra_miss(mapping, &ra, index);              goto no_cached_page;         }     ……     …… }Handle_ra_miss()主要对文件的预读进行调整,在这里不进行分析,待分析预读机制的时候再来详细分析.如果页面高速缓存中不存在此页面就会跳转到no_cached_page:no_cached_page:         /*          * Ok, it wasn't cached, so we need to create a new          * page..          */          //在页缓区中没有相关的缓存页          //新分匹一个页面         if (!cached_page) {              cached_page = page_cache_alloc_cold(mapping);              if (!cached_page) {                   desc->error = -ENOMEM;                   goto out;              }         }          //将分得的页加到页缓存区和LRU         // TODO:在将新页面插入页缓存区域中,会将页面标志设置为PG_locked          error = add_to_page_cache_lru(cached_page, mapping,                            index, GFP_KERNEL);         if (error) {              if (error == -EEXIST)                   goto find_page;              desc->error = error;              goto out;         }         page = cached_page;         cached_page = NULL;         goto readpage;在这里,会首先调用page_cache_alloc_cold()分配一个页面。然后调用add_to_page_cache_lru()将页面插入页高速缓存并加入lru.然后跳转到readpage。这也是第3种情况对应的处理: //读取页面readpage:         /* Start the actual read. The read will unlock the page. */          //到这里的话,实际的读取过程开始了 ^_^         error = mapping->a_ops->readpage(filp, page);在这里会看到,最终会调用页高速缓存的readpage方法进行读取操作。 文件页高速缓存的readpage操作同理,还是以ext2文件系统为例来分析。在open的时候,它将页高速缓存对应的各项操作设置如下:inode->i_mapping->a_ops = &ext2_aops;struct address_space_operations ext2_aops = {     .readpage     = ext2_readpage,     .readpages         = ext2_readpages,     .writepage         = ext2_writepage,     .sync_page         = block_sync_page,     .prepare_write         = ext2_prepare_write,     .commit_write      = generic_commit_write,     .bmap              = ext2_bmap,     .direct_IO         = ext2_direct_IO,     .writepages        = ext2_writepages,};对应的入口为ext2_readpage:static int ext2_readpage(struct file *file, struct page *page){     return mpage_readpage(page, ext2_get_block);}这是一个封装的函数,采用一个回调函数做为参数.该回调函数将相对于文件起始的块号转换为文件系统的逻辑块号.Mpage_readpage()的代码如下:int mpage_readpage(struct page *page, get_block_t get_block){     struct bio *bio = NULL;     sector_t last_block_in_bio = 0;      //转要读的信息转换为bio结构     bio = do_mpage_readpage(bio, page, 1,              &last_block_in_bio, get_block);     //提交这个bio     if (bio)         mpage_bio_submit(READ, bio);     return 0;}mpage_bio_submit()这个操作中有一部份代码在之前已经分析过了。剩余的代码很简单。这里不做分析.do_mpage_readpage()的代码如下:static struct bio *do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,              sector_t *last_block_in_bio, get_block_t get_block){     struct inode *inode = page->mapping->host;     const unsigned blkbits = inode->i_blkbits;     //计算一个页面中的数据块数目     const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;     //block的大小     const unsigned blocksize = 1 << blkbits;     sector_t block_in_file;     sector_t last_block;     sector_t blocks[MAX_BUF_PER_PAGE];     unsigned page_block;     unsigned first_hole = blocks_per_page;     struct block_device *bdev = NULL;     struct buffer_head bh;     int length;     int fully_mapped = 1;      //如果页面是一个缓存区页,跳转到confused.直接更新页在中的块缓存区     if (page_has_buffers(page))         goto confused;      //页序号*每个页中的块数目 = 页面中的首个块号     block_in_file = page->index << (PAGE_CACHE_SHIFT - blkbits);     //文件最后的块: 文件大小/块大小     last_block = (i_size_read(inode) + blocksize - 1) >> blkbits;      bh.b_page = page;     //遍历页面中的块数     for (page_block = 0; page_block < blocks_per_page;                   page_block++, block_in_file++) {         bh.b_state = 0;         if (block_in_file < last_block) {              //将文件中的块号转换成bh              if (get_block(inode, block_in_file, &bh, 0))                   //如果有错误                   goto confused;         }      //bh没有被映射,可能是一个文件空洞         if (!buffer_mapped(&bh)) {              fully_mapped = 0;              if (first_hole == blocks_per_page)                   first_hole = page_block;              continue;         }          /* some filesystems will copy data into the page during          * the get_block call, in which case we don't want to          * read it again.  map_buffer_to_page copies the data          * we just collected from get_block into the page's buffers          * so readpage doesn't have to repeat the get_block call          */          //如果块缓存区是最新的,将其数据直接copy到page         if (buffer_uptodate(&bh)) {              map_buffer_to_page(page, &bh, page_block);              goto confused;         }              if (first_hole != blocks_per_page)              goto confused;         /* hole -> non-hole */          /* Contiguous blocks? */         //判断请求的块缓存是不是连续的。如果不连续,就跳转到confused         if (page_block && blocks[page_block-1] != bh.b_blocknr-1)              goto confused;         blocks[page_block] = bh.b_blocknr;         bdev = bh.b_bdev;     }      if (first_hole != blocks_per_page) {         char *kaddr = kmap_atomic(page, KM_USER0);         memset(kaddr + (first_hole << blkbits), 0,                   PAGE_CACHE_SIZE - (first_hole << blkbits));         flush_dcache_page(page);         kunmap_atomic(kaddr, KM_USER0);         if (first_hole == 0) {              SetPageUptodate(page);              unlock_page(page);              goto out;         }     } else if (fully_mapped) {         //设置PG_mappedtodisk         SetPageMappedToDisk(page);     }      /*      * This page will go to BIO.  Do we need to send this BIO off first?      */     if (bio && (*last_block_in_bio != blocks[0] - 1))         bio = mpage_bio_submit(READ, bio); alloc_new:     if (bio == NULL) {         //创建一个bio         bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),                   min_t(int, nr_pages, bio_get_nr_vecs(bdev)),                   GFP_KERNEL);         if (bio == NULL)              goto confused;     }      length = first_hole << blkbits;     //将page对应的偏移与长度设置到bio 中     if (bio_add_page(bio, page, length, 0) < length) {         bio = mpage_bio_submit(READ, bio);         goto alloc_new;     }      if (buffer_boundary(&bh) || (first_hole != blocks_per_page))         bio = mpage_bio_submit(READ, bio);     else         *last_block_in_bio = blocks[blocks_per_page - 1];out:     return bio; confused:     if (bio)         bio = mpage_bio_submit(READ, bio);     if (!PageUptodate(page))             block_read_full_page(page, get_block);     else         unlock_page(page);     goto out;}这段代码实际上做了一个小小的优化。它会判断要提交的块缓存区是不是连续的。如果是连续的就可以将它们放一个bio中。然后提交到通用块设备层。如果不是连续的,对于每一个块缓存区都要提交一次.对于连续条件的bio提交很好理解,代码也很容易.重点分析对于不连续的块的处理。在上面的代码中可以看到,对于不连续块是通过block_read_full_page()来处理的.代码如下:int block_read_full_page(struct page *page, get_block_t *get_block){     struct inode *inode = page->mapping->host;     sector_t iblock, lblock;     struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];     unsigned int blocksize;     int nr, i;     int fully_mapped = 1;      //页面没有被锁定     if (!PageLocked(page))         PAGE_BUG(page);     //块大小     blocksize = 1 << inode->i_blkbits;     //如果页面中没有块缓存区,则在其中建立空的块缓存区     if (!page_has_buffers(page))         create_empty_buffers(page, blocksize, 0);     //块缓存区描述符的首部     head = page_buffers(page);      //页中的起始块号     iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);     //文件中的最后一个块号     lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;     bh = head;     nr = 0;     i = 0;      do {         //已经是最新的了,不需要提交,继续下一个         if (buffer_uptodate(bh))              continue;         //如果块缓存区没有被映射         if (!buffer_mapped(bh)) {              fully_mapped = 0;              if (iblock < lblock) {                   //将文件块号转换为bh                   if (get_block(inode, iblock, bh, 0))                       SetPageError(page);              }              //如果这个bh还是没有映射。可能是对应文件的空洞区域              //将这个bh对应的区域置0              if (!buffer_mapped(bh)) {                   void *kaddr = kmap_atomic(page, KM_USER0);                   memset(kaddr + i * blocksize, 0, blocksize);                   flush_dcache_page(page);                   kunmap_atomic(kaddr, KM_USER0);                   set_buffer_uptodate(bh);                   continue;              }              /*               * get_block() might have updated the buffer               * synchronously               */               //如果bh为最新了,不需要提交了              if (buffer_uptodate(bh))                   continue;         }          //提要提交的bh保存到arr数组里         arr[nr++] = bh;     } while (i++, iblock++, (bh = bh->b_this_page) != head);      //设置PG_mappdtodisk     if (fully_mapped)         SetPageMappedToDisk(page);      //如果没有要提交的     if (!nr) {         /*          * All buffers are uptodate - we can set the page uptodate          * as well. But not if get_block() returned an error.          */         if (!PageError(page))              SetPageUptodate(page);         unlock_page(page);         return 0;     }      /* Stage two: lock the buffers */     //对每一个提交的bh进行锁定     for (i = 0; i < nr; i++) {         bh = arr[i];         lock_buffer(bh);         mark_buffer_async_read(bh);     }      /*      * Stage 3: start the IO.  Check for uptodateness      * inside the buffer lock in case another process reading      * the underlying blockdev brought it uptodate (the sct fix).      */      //提交每一个bh     for (i = 0; i < nr; i++) {         bh = arr[i];         if (buffer_uptodate(bh))              end_buffer_async_read(bh, 1);         else              submit_bh(READ, bh);     }     return 0;}从上面的代码中看了.对于不连续的读操作,会反复调用submit_bh()来完成. 8.2:文件的写操作在用户空间中,用户的写操作接口为write.对应系统调用的入口为sys_write().代码如下:asmlinkage ssize_t sys_write(unsigned int fd, const char __user * buf, size_t count){     struct file *file;     ssize_t ret = -EBADF;     int fput_needed;      //取得文件描述符对应的file     //fget_ligsh():对fget()进行了优化。如果当前file没有被共享的话。那么在取的时候就不必要加锁     file = fget_light(fd, &fput_needed);     if (file) {         //当前文件指针位置         loff_t pos = file_pos_read(file);         ret = vfs_write(file, buf, count, &pos);         //更新文件指针         file_pos_write(file, pos);         //对共享情况下的解锁         fput_light(file, fput_needed);     }      return ret;}上面的代码与读操作差不多,都是取文件描述符和当前文件,操作完后,更新文件指针位置.vfs_write()代码如下:ssize_t vfs_write(struct file *file, const char __user *buf, size_t count, loff_t *pos){     struct inode *inode = file->f_dentry->d_inode;     ssize_t ret;      //文件不可写?          if (!(file->f_mode & FMODE_WRITE))         return -EBADF;     //没有操作函数或者是有操作函数但没有写函数。出错返回     if (!file->f_op || (!file->f_op->write && !file->f_op->aio_write))         return -EINVAL;     //对写区域所加的强制锁     ret = locks_verify_area(FLOCK_VERIFY_WRITE, inode, file, *pos, count);     if (!ret) {         ret = security_file_permission (file, MAY_WRITE);         if (!ret) {              if (file->f_op->write)                   ret = file->f_op->write(file, buf, count, pos);              else                   ret = do_sync_write(file, buf, count, pos);              if (ret > 0)                   dnotify_parent(file->f_dentry, DN_MODIFY);         }     }      return ret;}对于大部份情况,写操作会由file->f_op->write完成.在ext2文件系统中,此接口对应的函数为:ssize_t generic_file_write(struct file *file, const char __user *buf,                 size_t count, loff_t *ppos){     struct address_space *mapping = file->f_mapping;     struct inode *inode = mapping->host;     ssize_t  ret;     struct iovec local_iov = { .iov_base = (void __user *)buf,                       .iov_len = count };      down(&inode->i_sem);     //返回write的有效字节数     ret = generic_file_write_nolock(file, &local_iov, 1, ppos);     up(&inode->i_sem);      //如果定义了O_SYNC或者inode定义了MS_SYNCHRONOUS标志     if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {         ssize_t err;          //把缓存区上面的东西写回设备         err = sync_page_range(inode, mapping, *ppos - ret, ret);         if (err < 0)              ret = err;     }     return ret;}如果打开文件时带有O_SYNC标志,或者文件系统带有SYNC标志,都会将缓存中的数据直接写到文件系统上.转入generic_file_write_nolock():ssize_tgeneric_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,                   unsigned long nr_segs, loff_t *ppos){     struct file *file = iocb->ki_filp;     struct address_space * mapping = file->f_mapping;     size_t ocount;         /* original count */     size_t count;      /* after file limit checks */     struct inode *inode = mapping->host;     unsigned long seg;     loff_t        pos;     ssize_t       written;     ssize_t       err;      ocount = 0;     for (seg = 0; seg < nr_segs; seg++) {         const struct iovec *iv = &iov[seg];          /*          * If any segment has a negative length, or the cumulative          * length ever wraps negative then return -EINVAL.          */         ocount += iv->iov_len;         if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))              return -EINVAL;         //判断用户给的区域是否合法         if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))              continue;         if (seg == 0)              return -EFAULT;         nr_segs = seg;         ocount -= iv->iov_len; /* This segment is no good */         break;     }      //count: 要write的字节总数     count = ocount;     //ppos:当前的位置     pos = *ppos;      /* We can write back this queue in page reclaim */     //backing_dev_info: 预读信息     current->backing_dev_info = mapping->backing_dev_info;     written = 0;      //对写操作的详细检查     err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));     if (err)         goto out;      if (count == 0)         goto out;      err = remove_suid(file->f_dentry);     if (err)         goto out;      //更新索引结点的时间戳信息     inode_update_time(inode, 1);      /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */     if (unlikely(file->f_flags & O_DIRECT)) {         written = generic_file_direct_write(iocb, iov,                   &nr_segs, pos, ppos, count, ocount);         if (written < 0 || written == count)              goto out;         /*          * direct-io write to a hole: fall through to buffered I/O          * for completing the rest of the request.          */         pos += written;         count -= written;     }      written = generic_file_buffered_write(iocb, iov, nr_segs,              pos, ppos, count, written);out:     current->backing_dev_info = NULL;     return written ? written : err;}如果文件打开时带有了O_DIRECT标志,则会跳过文件缓存直接将数据写到文件系统中。对于O_DIRECT的操作我们在之后再做总结。对于一般的情况,都会转入到generic_file_buffered_write():ssize_tgeneric_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,         unsigned long nr_segs, loff_t pos, loff_t *ppos,         size_t count, ssize_t written){     struct file *file = iocb->ki_filp;     struct address_space * mapping = file->f_mapping;     struct address_space_operations *a_ops = mapping->a_ops;     struct inode *inode = mapping->host;     long     status = 0;     struct page   *page;     struct page   *cached_page = NULL;     size_t        bytes;     struct pagevec     lru_pvec;     const struct iovec *cur_iov = iov; /* current iovec */     size_t        iov_base = 0;    /* offset in the current iovec */     char __user   *buf;      pagevec_init(&lru_pvec, 0);      buf = iov->iov_base + written;   /* handle partial DIO write */     do {         unsigned long index;         unsigned long offset;         size_t copied;          //offset: 页面中的偏移         offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */         //offset: 页面序号         index = pos >> PAGE_CACHE_SHIFT;         //页面中的剩余信息         bytes = PAGE_CACHE_SIZE - offset;         //如果bytes > 数据的长度         if (bytes > count)              bytes = count;          /*          * Bring in the user page that we will copy from _first_.          * Otherwise there's a nasty deadlock on copying from the          * same page as we're writing to, without it being marked          * up-to-date.          */         fault_in_pages_readable(buf, bytes);          //到页高速缓存中寻找index对应的页面。如果不存在,则新建         page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);         if (!page) {              status = -ENOMEM;              break;         }          //调用prepare_write。在这里就会涉及到缓存头的概念了 ^_^          status = a_ops->prepare_write(file, page, offset, offset+bytes);         if (unlikely(status)) {              loff_t isize = i_size_read(inode);              /*               * prepare_write() may have instantiated a few blocks               * outside i_size.  Trim these off again.               */              unlock_page(page);              page_cache_release(page);              if (pos + bytes > isize)                   vmtruncate(inode, isize);              break;         }          //把数据copy到缓冲区         if (likely(nr_segs == 1))              copied = filemap_copy_from_user(page, offset,                                 buf, bytes);         else              copied = filemap_copy_from_user_iovec(page, offset,                            cur_iov, iov_base, bytes);         flush_dcache_page(page);          //调用commit_write。将数据写回设备         status = a_ops->commit_write(file, page, offset, offset+bytes);         if (likely(copied > 0)) {              if (!status)                   status = copied;               if (status >= 0) {                   written += status;                   count -= status;                   pos += status;                   buf += status;                   if (unlikely(nr_segs > 1))                       filemap_set_next_iovec(&cur_iov,                                 &iov_base, status);              }         }         if (unlikely(copied != bytes))              if (status >= 0)                   status = -EFAULT;         unlock_page(page);         mark_page_accessed(page);         page_cache_release(page);         if (status < 0)              break;         balance_dirty_pages_ratelimited(mapping);         cond_resched();     } while (count);     *ppos = pos;      if (cached_page)         page_cache_release(cached_page);      /*      * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC      */     if (likely(status >= 0)) {         if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {              if (!a_ops->writepage || !is_sync_kiocb(iocb))                   status = generic_osync_inode(inode, mapping,                            OSYNC_METADATA|OSYNC_DATA);         }     }          /*      * If we get here for O_DIRECT writes then we must have fallen through      * to buffered writes (block instantiation inside i_size).  So we sync      * the file data here, to try to honour O_DIRECT expectations.      */     if (unlikely(file->f_flags & O_DIRECT) && written)         status = filemap_write_and_wait(mapping);      pagevec_lru_add(&lru_pvec);     return written ? written : status;}从上面的代码可以看出:对于写操作,会先到高速缓存中取对应的page。然后调用a_ops->prepare_write()。然后将要写的数据拷贝到缓存区页上,接着调用a_ops-> commit_write()。下来我们分别分别这两个操作.8.2.1:页高速缓存的prepare_write()操作Ext2系统对应的入口为:static intext2_prepare_write(struct file *file, struct page *page,              unsigned from, unsigned to){     return block_prepare_write(page,from,to,ext2_get_block);}这里是一个封装函数。对于块设备来说,不同的只是后面所带的函数指针,这样的函数结构我们在读操作中也见过。Ext_get_block()函数的操作为,将对应文件的块号转换为文件系统的逻辑块号.转入block_prepare_write():int block_prepare_write(struct page *page, unsigned from, unsigned to,              get_block_t *get_block){     struct inode *inode = page->mapping->host;     int err = __block_prepare_write(inode, page, from, to, get_block);     //如果失败,清除page的uptodate标志     if (err)         ClearPageUptodate(page);     return err;}__block_prepare_write()的操作为:static int __block_prepare_write(struct inode *inode, struct page *page,         unsigned from, unsigned to, get_block_t *get_block){     unsigned block_start, block_end;     sector_t block;     int err = 0;     unsigned blocksize, bbits;     struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;      BUG_ON(!PageLocked(page));     BUG_ON(from > PAGE_CACHE_SIZE);     BUG_ON(to > PAGE_CACHE_SIZE);     BUG_ON(from > to);      //标大小     blocksize = 1 << inode->i_blkbits;     if (!page_has_buffers(page))         create_empty_buffers(page, blocksize, 0);     head = page_buffers(page);      bbits = inode->i_blkbits;     //该页面的起始起号     block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);      for(bh = head, block_start = 0; bh != head || !block_start;         block++, block_start=block_end, bh = bh->b_this_page) {         block_end = block_start + blocksize;          //对于没有落在from->to这个区间的bh         // TODO: 这样做实际上要依赖一个条件: 块大小必须为512的整数倍且须为2的幂大小         if (block_end <= from || block_start >= to) {              if (PageUptodate(page)) {                   if (!buffer_uptodate(bh))                       set_buffer_uptodate(bh);              }              continue;         }         if (buffer_new(bh))              clear_buffer_new(bh);         if (!buffer_mapped(bh)) {              //这里可能会进行文件系统大小的扩充.              err = get_block(inode, block, bh, 1);              if (err)                   goto out;              //块缓存区刚被分配,没有被访问就置为BH_NEW              //通常是通过get_block()刚刚映射好的,不能访问              if (buffer_new(bh)) {                   clear_buffer_new(bh);                   unmap_underlying_metadata(bh->b_bdev,                                 bh->b_blocknr);                   //如果页面uptodate.则设置bh的相应标志                   if (PageUptodate(page)) {                       set_buffer_uptodate(bh);                       continue;                   }                   //如果只是对该块缓存区的部份进行操作,则将不操作的部份置0                   if (block_end > to || block_start < from) {                       void *kaddr;                        kaddr = kmap_atomic(page, KM_USER0);                       if (block_end > to)                            memset(kaddr+to, 0,                                 block_end-to);                       if (block_start < from)                            memset(kaddr+block_start,                                 0, from-block_start);                       flush_dcache_page(page);                       kunmap_atomic(kaddr, KM_USER0);                   }                   continue;              }         }         if (PageUptodate(page)) {              if (!buffer_uptodate(bh))                   set_buffer_uptodate(bh);              continue;          }          //如果bh没有uptodata.先将其和文件系统同步         if (!buffer_uptodate(bh) && !buffer_delay(bh) &&              (block_start < from || block_end > to)) {              ll_rw_block(READ, 1, &bh);              *wait_bh++=bh;         }     }     /*      * If we issued read requests - let them complete.      */      //如果有提交的bh.等待其I/O完成     while(wait_bh > wait) {         wait_on_buffer(*--wait_bh);         if (!buffer_uptodate(*wait_bh))              return -EIO;     }     return 0;out:     /*      * Zero out any newly allocated blocks to avoid exposing stale      * data.  If BH_New is set, we know that the block was newly      * allocated in the above loop.      */     bh = head;     block_start = 0;     do {         block_end = block_start+blocksize;         if (block_end <= from)              goto next_bh;         if (block_start >= to)              break;         if (buffer_new(bh)) {              void *kaddr;               clear_buffer_new(bh);              kaddr = kmap_atomic(page, KM_USER0);              memset(kaddr+block_start, 0, bh->b_size);              kunmap_atomic(kaddr, KM_USER0);              set_buffer_uptodate(bh);              mark_buffer_dirty(bh);         }next_bh:         block_start = block_end;         bh = bh->b_this_page;     } while (bh != head);     return err;}对于读操作,写操作可能更加复杂,因为写操作要动态调整文件的大小。文件大小的调整过程是在ext_get_block()这个回调函数中完成的。Prepare_write操作完成了对缓存冲页进行了必要的初始化和文件大小的扩充.直正将数据写到文件系统上是在commit_write()中完成的:int generic_commit_write(struct file *file, struct page *page,         unsigned from, unsigned to){     struct inode *inode = page->mapping->host;     loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;     __block_commit_write(inode,page,from,to);     /*      * No need to use i_size_read() here, the i_size      * cannot change under us because we hold i_sem.      */      //如果文件被扩大了.更改inode->i_size     if (pos > inode->i_size) {         i_size_write(inode, pos);         mark_inode_dirty(inode);     }     return 0;}经过上面的分析,我们知道,在调用commit_write()之前,已经将要写的数据拷贝到了页缓冲区.__block_commit_write()的代码如下:static int __block_commit_write(struct inode *inode, struct page *page,         unsigned from, unsigned to){     unsigned block_start, block_end;     int partial = 0;     unsigned blocksize;     struct buffer_head *bh, *head;      blocksize = 1 << inode->i_blkbits;      //对被修改的部份置为dirty     for(bh = head = page_buffers(page), block_start = 0;         bh != head || !block_start;         block_start=block_end, bh = bh->b_this_page) {         block_end = block_start + blocksize;         if (block_end <= from || block_start >= to) {              if (!buffer_uptodate(bh))                   partial = 1;         } else {              set_buffer_uptodate(bh);              mark_buffer_dirty(bh);         }     }      /*      * If this is a partial write which happened to make all buffers      * uptodate then we can optimize away a bogus readpage() for      * the next read(). Here we 'discover' whether the page went      * uptodate as a result of this (potentially partial) write.      */     //如果整个页面的块缓存区都置为了dirty.则置页面的PG_uptodate标志.     if (!partial)         SetPageUptodate(page);     return 0;}在上面的代码中,我们看到,只是把块缓存区置为了“脏”,并没有直正的将数据写到文件系统中,那是什么时候完成这个写的过程的呢?记得我们在分析pdflush线程数的时候,曾经介绍过 “回写陈旧的页面”。没错,就是在那里,旧页面被回写到了文件系统.在那一节,我们遗留下了两个问题。即mapping->a_ops->writepages和mapping->a_ops->writepage的操作。我们在这一节里详细的分析一下. 8.2.1: mapping->a_ops->writepages()操作对于ext2来说,它的mapping各项操作赋值为:struct address_space_operations ext2_aops = {…….writepage         = ext2_writepage,.writepages        = ext2_writepages,……}相应的,writepages入口为ext2_writepages():static intext2_writepages(struct address_space *mapping, struct writeback_control *wbc){     return mpage_writepages(mapping, wbc, ext2_get_block);}mpage_writepages()就是我们在pdflush线程组中曾经分析过的子函数.在这里不再赘述. 8.2.2: mapping->a_ops->writepage()操作相应的入口为ext2_writepage():static int ext2_writepage(struct page *page, struct writeback_control *wbc){     return block_write_full_page(page, ext2_get_block, wbc);}转入block_write_full_page()static int __block_write_full_page(struct inode *inode, struct page *page,              get_block_t *get_block, struct writeback_control *wbc){     int err;     sector_t block;     sector_t last_block;     struct buffer_head *bh, *head;     int nr_underway = 0;      BUG_ON(!PageLocked(page));      //文件中的最后一个块号     last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;      //如果不是块缓存页,则在页中建立块缓存区     if (!page_has_buffers(page)) {         create_empty_buffers(page, 1 << inode->i_blkbits,                       (1 << BH_Dirty)|(1 << BH_Uptodate));     }      /*      * Be very careful.  We have no exclusion from __set_page_dirty_buffers      * here, and the (potentially unmapped) buffers may become dirty at      * any time.  If a buffer becomes dirty here after we've inspected it      * then we just miss that fact, and the page stays dirty.      *      * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;      * handle that here by just cleaning them.      */      //块缓存页中的起始块号     block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);     //块缓存区描述符首部     head = page_buffers(page);     bh = head;      /*      * Get all the dirty buffers mapped to disk addresses and      * handle any aliases from the underlying blockdev's mapping.      */     do {         //如果块号超过了文件的最后块号         if (block > last_block) {              /*               * mapped buffers outside i_size will occur, because               * this page can be outside i_size when there is a               * truncate in progress.               */              /*               * The buffer was zeroed by block_write_full_page()               */              clear_buffer_dirty(bh);              set_buffer_uptodate(bh);         } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {         //从文件系统中读取文件相对块号对应的bh              err = get_block(inode, block, bh, 1);              if (err)                   goto recover;              if (buffer_new(bh)) {                   /* blockdev mappings never come here */                   clear_buffer_new(bh);                   unmap_underlying_metadata(bh->b_bdev,                                 bh->b_blocknr);              }         }         bh = bh->b_this_page;         block++;     } while (bh != head);      do {         get_bh(bh);         //块缓存区没有被映射         if (!buffer_mapped(bh))              continue;         /*          * If it's a fully non-blocking write attempt and we cannot          * lock the buffer then redirty the page.  Note that this can          * potentially cause a busy-wait loop from pdflush and kswapd          * activity, but those code paths have their own higher-level          * throttling.          */          //在操作之前先锁定块缓存区         if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {              lock_buffer(bh);         } else if (test_set_buffer_locked(bh)) {              //如果操作模式为WB_SYNC_NONE或者不允许阻塞。              //在块缓存区已经被锁定时,直接退出              redirty_page_for_writepage(wbc, page);              continue;         }         //如果页面为脏,设置块缓存区为BH_ASYNC_WRITE         if (test_clear_buffer_dirty(bh)) {              mark_buffer_async_write(bh);         } else {              unlock_buffer(bh);         }     } while ((bh = bh->b_this_page) != head);      /*      * The page and its buffers are protected by PageWriteback(), so we can      * drop the bh refcounts early.      */     BUG_ON(PageWriteback(page));     //设置页面回写标志     set_page_writeback(page);     unlock_page(page);      //遍历页中的块缓存区,将BH_ASYNC_WRITE标志的BH回写到文件系统     do {         struct buffer_head *next = bh->b_this_page;         if (buffer_async_write(bh)) {              submit_bh(WRITE, bh);              nr_underway++;         }         put_bh(bh);         bh = next;     } while (bh != head);      err = 0;done:     if (nr_underway == 0) {         /*          * The page was marked dirty, but the buffers were          * clean.  Someone wrote them back by hand with          * ll_rw_block/submit_bh.  A rare case.          */         int uptodate = 1;         do {              if (!buffer_uptodate(bh)) {                   uptodate = 0;                   break;              }              bh = bh->b_this_page;         } while (bh != head);         if (uptodate)              SetPageUptodate(page);         end_page_writeback(page);         /*          * The page and buffer_heads can be released at any time from          * here on.          */         wbc->pages_skipped++;  /* We didn't write this page */     }     return err; recover:     /*      * ENOSPC, or some other error.  We may already have added some      * blocks to the file, so we need to write these out to avoid      * exposing stale data.      * The page is currently locked and not marked for writeback      */     bh = head;     /* Recovery: lock and submit the mapped buffers */     do {         get_bh(bh);         if (buffer_mapped(bh) && buffer_dirty(bh)) {              lock_buffer(bh);              mark_buffer_async_write(bh);         } else {              /*               * The buffer may have been set dirty during               * attachment to a dirty page.               */              clear_buffer_dirty(bh);         }     } while ((bh = bh->b_this_page) != head);     SetPageError(page);     BUG_ON(PageWriteback(page));     set_page_writeback(page);     unlock_page(page);     do {         struct buffer_head *next = bh->b_this_page;         if (buffer_async_write(bh)) {              clear_buffer_dirty(bh);              submit_bh(WRITE, bh);              nr_underway++;         }         put_bh(bh);         bh = next;     } while (bh != head);     goto done;}该函数会遍历页面中的块缓存区,然后将脏的块缓存区写回文件系统.