解一元三次方程的公式:非欧几里得几何 - Qzone日志

来源:百度文库 编辑:九乡新闻网 时间:2024/04/27 23:35:41

日志

上一篇:一位年轻女董事长...

下一篇:佛家四大经典爱情...

|返回日志列表

非欧几里得几何 [图片]

  • 复制地址

    请用Ctrl+C复制后贴给好友。

佛陀的泪珠 2010年10月01日 15:06 阅读(0) 评论(0) 分类:学亦乐乎 权限: 公开

  • 字体:中
  • 更多
    • 设置置顶
    • 权限设置
    • 推荐日志
    • 转为私密日志
  • 删除
  • 编辑

Erlangen纲领——几何学Comments>>

| Tags 标签:原创, 平行公理, 欧氏几何, 瑟斯顿几何化猜想, 非欧几何    季候风 发表于 2010-09-30 16:02

“非欧几何” 的发现是19世纪最大的数学进展之一. 主要的先驱人物是俄国的罗巴切夫斯基, 匈牙利的鲍耶, 和德国的高斯. 非欧几何的故事已经流传很广了, 它与欧氏几何的不同就在于所谓欧氏平行公理: 过直线外一点有且只有一条直线与已知直线平行. 如果把这条公理改成 “过直线外一点有两条以上的直线与已知直线平行”, 而保持其它公理不变, 就得到一种新的几何, 称为非欧几何. 关于非欧几何的文章发表于 1830 年左右. 有迹象表明高斯在早些年就得到了一些结果. 然而非欧几何这个名称在 1854 年黎曼的就职演讲发表以后含义就不够精确了(因为黎曼提供了无穷多种“非欧”的几何形态), 现在大部分数学家把上述这种公理化几何称为”双曲几何”.

19世纪还出现了一种几何叫射影几何. 研究这种几何的动机是非常贴近生活的 —— 它主要研究 “中心投影” 现象。通俗一点说, 如果有一盏灯, 它照射在纸面上, 那么纸面上的图形在地面上的投影是怎么样的? 最明显的就是, 纸面上的圆周在灯光下的影子一般不再是圆周, 可能是个椭圆周; 然后注意到, 如果纸面不平行于地面, 纸面上两条平行的直线在灯光下的投影可能不再平行; 更奇异的现象是, 如果纸面足够大,它上面的一个圆周也足够大, 使得圆周上有些点比电灯所处位置更高, 那么这个圆周在地面上的投影就会是双曲线. (记得高中的解析几何课本封面上绘有一个圆锥面, 用不同的平面去截就得到不同的圆锥曲线. 如果把锥的顶点视为一盏灯, 就容易看到所有这些圆锥曲线都可以互为中心投影.)

还有一种几何是研究平行投影下图形怎么变化的, 叫做 “仿射几何”. 如果把上面的灯换成太阳, 由于距离太远, 在小范围内是非常精确的平行投影 —— 纸面上两条平行直线总是投射为地面上的平行直线. 圆周会投射为椭圆周, 但决不会是双曲线。

在 1872 年, 所有这些几何把数学家搞懵了 —— 到底什么是几何? 这时候 23 岁的德国人克莱因在爱尔朗根大学为其教授就职演讲准备了一篇讲稿 —— 这篇稿子后来被称为爱尔朗根纲领 ——虽然他后来的演讲并没有讲这个讲稿上的内容. 这篇讲稿提出, 每一种几何对应一个变换群, 这种几何研究的对象是各种形体在相应变换群下不变的性质.

“群” 是描述对称性的数学结构. 变换群被伽罗瓦发明出来研究代数方程的可解性. 而克莱因的合作者法国人李(Lie)到 1872 年已经研究了某些连续的变换群, 现在称为 Lie 群. 以上所说的这几种几何都对应到不同的 Lie 群.

现在我们从克莱因的爱尔朗根纲领来看待以上提到的这些几何:

欧氏几何是 “最小” 的几何, 研究的就是长度啊, 全等啊这些性质. 对应的群就是所谓 “欧氏变换群”, 它里面的元素包括平移, 旋转, 反射以及它们的累次作用. 这些变换保持长度不变; 我们说两个图形是 “全等” 的当且仅当有一个欧氏变换把一个图形变为另一个.

我们初中高中的时候还研究相似三角形. 这种包含“相似性”的几何对应到什么变换群?我们可以把 “欧氏变换群” 扩大, 即, 加入 “伸缩” 这个变换, 这样就得到更大的 “相似变换群”. 我们能用相似变换把不同长度的对象 “等同” 起来, 比如不同半径的圆周, 在相似几何中就被视为同样的图形. 三角形的 “相似” 就是相似几何中的 “全等”. 这个相似变换群包含欧氏变换群, 所以在这个群下不变的性质自然在欧氏变换群下不变, 也就是说, “相似几何” 的概念都是欧氏几何的概念. 反过来就不对, 举个例子, 长度是欧氏几何的概念, 但不是相似几何的概念. 这句话说得直白一点就是,几何体的长度在欧氏变换群下不变,但在相似变换群下有可能改变。

仿射几何是更大的几何. 对应的群叫 “仿射变换群”, 包括平移, 线性变换以及它们的累次作用. 线性变换的意思基本上就是那些把直线还变到直线的变换。由于旋转, 反射, 伸缩都是特殊的线性变换, 所以仿射变换群包含相似变换群. 在仿射几何里, 圆和椭圆是同一种图形; 所有的平行四边形都 “全等”; … 在这个几何里, 长度, 角度都失去意义, 能谈论的只能是平行性质, 或者共线三点的分比(单比), 等等这些很 “粗略” 的性质.

射影几何是以上提到的几何中 “最大” 的几何. 从仿射几何到射影几何的扩张, 比之前的几次扩张要复杂得多. 特别地, 我们需要给平面添上 “无穷远直线” 来使得射影变换是一对一变换. 这其实很容易理解,如果纸面不平行于地面,那么从光源水平射出的光线就只与纸面相交而不与地面相交,这样它与纸面的交点在射影变换下就没有像。如果我们假设地面的无穷远处存在所谓“无穷远点”,那么就可以把这些无穷远点作为水平光线与地面的交点。平面的所有无穷远点构成无穷远直线。在射影几何中, 所有圆锥曲线 —— 椭圆, 双曲线, 抛物线, 都是 “全等” 的图形. 所以射影几何研究的性质是最 “粗略” 的性质, 比如曲线的 “次数”: 直线是由一次方程定义的曲线, 圆锥曲线是由二次方程定义的曲线; 再比如共线四点的交比. 射影几何是非常有趣的几何, 有很多 “巧合”, 部分原因就是这个几何的变换群非常大, 对称性高. 同志们如果实在闲得无聊, 可以找本书看看, 书名一般叫做 “Projective geometry”.

对于熟悉计算机的同志, 可以看出在每种几何里我们都 “重载” 了 “全等” 这个概念 ——这正是关键所在 —— 凡是能用一个变换互相转换的对象, 我们都看成同样的对象. 自爱尔朗根纲领提出以来, 对称性(群论)日益收到重视, 到了今天, 已经成为根深蒂固的观念. 物理学中, 自相对论、量子力学以来, 对称性也被作为基本原理, 到了 1970 年代, 物理学家发现自然界四种基本相互作用的根源都是对称性. 由此可见伽罗瓦, 李, 克莱因这些前辈的深刻洞察力.

最近俄罗斯数学家佩雷尔曼解决了百万美元问题 “庞加莱猜想” 及更广泛的 “瑟斯顿几何化猜想”. 后面这个猜想就是天才的瑟斯顿继承爱尔朗根纲领的精神给出的解决三维流形分类问题的蓝图. 具体内容如何, 且待下回分解.

非欧几里得几何

百科名片

   非欧几里得几何

Non-Euclidean geometry 非欧几里得几何是一门大的数学分支,一般来讲 ,它有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里得几何不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。

目录

诞生
几何原本第五公设
罗巴切夫斯基几何
  1. 欧式几何
  2. 罗氏几何
黎曼几何
鲍耶和高斯的贡献
三种几何的关系
诞生
几何原本第五公设
罗巴切夫斯基几何
  1. 欧式几何
  2. 罗氏几何
黎曼几何
鲍耶和高斯的贡献
三种几何的关系
展开

 

编辑本段 诞生

  欧几里得的《几何原本》提出了五条公设,长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。   有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。   因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。   由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?   到了十九世纪二十年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设,然后与欧式几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法。   但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:   第一,第五公设不能被证明。   第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧式几何一样是完善的、严密的几何学。   这种几何学被称为罗巴切夫斯基几何,简称罗氏几何。这是第一个被提出的非欧几何学。   从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。

编辑本段 几何原本第五公设

  古希腊数学家欧几里得的《几何原本》提出了五条公设。头四条公设分别为:   1.由任意一点到任意一点可作直线。   2.一条有限直线可以继续延长。   3.以任意点为心及任意的距离可以画圆。   4.凡直角都相等。   第五条公设说:同一平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于两直角,则这两直线经无限延长后在这一侧相交。   长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?

编辑本段 罗巴切夫斯基几何

  罗巴切夫斯基几何的公理系统和欧几里得几何不同的地方仅仅是把欧式几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。   我们知道,罗氏几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗氏几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,再罗氏几何中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明:

欧式几何

  同一直线的垂线和斜线相交。   垂直于同一直线的两条直线互相平行。   存在相似的多边形。   过不在同一直线上的三点可以做且仅能做一个圆。

罗氏几何

  同一直线的垂线和斜线不一定相交。   垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。   不存在相似的多边形。   过不在同一直线上的三点,不一定能做一个圆。   从上面所列举得罗氏几何的一些命题可以看到,这些命题和我们所习惯的直观形象有矛盾。所以罗氏几何中的一些几何事实没有像欧式几何那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观“模型”来解释罗氏几何是正确的。   1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。   直到这时,长期无人问津的非欧几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也就由此得到学术界的高度评价和一致赞美,他本人则被人们赞誉为“几何学中的哥白尼”。

编辑本段 黎曼几何

  欧氏几何与罗氏几何中关于结合公理、顺序公理、连续公理及合同公理都是相同的,只是平行公理不一样。欧式几何讲“过直线外一点有且只有一条直线与已知直线平行”。罗氏几何讲“ 过直线外一点至少存在两条直线和已知直线平行”。那么是否存在这样的几何“过直线外一点,不能做直线和已知直线平行”?黎曼几何就回答了这个问题。   黎曼几何是德国数学家黎曼创立的。他在1851年所作的一篇论文《论几何学作为基础的假设》中明确的提出另一种几何学的存在,开创了几何学的一片新的广阔领域。   黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有限的。黎曼几何的模型是一个经过适当“改进”的球面。   近代黎曼几何在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了关于时空均匀性的观念,他认为时空只是在充分小的空间里以一种近似性而均匀的,但是整个时空却是不均匀的。在物理学中的这种解释,恰恰是和黎曼几何的观念是相似的。   此外,黎曼几何在数学中也是一个重要的工具。它不仅是微分几何的基础,也应用在微分方程、变分法和复变函数论等方面。

编辑本段 鲍耶和高斯的贡献

  几乎在罗巴切夫斯基创立非欧几何学的同时,匈牙利数学家鲍耶·雅诺什也发现了第五公设不可证明和非欧几何学的存在。鲍耶在研究非欧几何学的过程中也遭到了家庭、社会的冷漠对待。他的父亲——数学家鲍耶·法尔卡什认为研究第五公设是耗费精力劳而无功的蠢事,劝他放弃这种研究。但鲍耶·雅诺什坚持为发展新的几何学而辛勤工作。终于在1832年,在他的父亲的一本著作里,以附录的形式发表了研究结果。高斯也发现第五公设不能证明,并且研究了非欧几何。但是高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向自己的朋友表示了自己的看法,也不敢站出来公开支持罗巴切夫斯基、鲍耶他们的新理论。

编辑本段 三种几何的关系

  欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三种几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。   在我们这个不大不小、不远不近的空间里,也就是在我们的日常生活中,欧式几何是适用的;在宇宙空间中或原子核世界,罗氏几何更符合客观实际;在地球表面研究航海、航空等实际问题中,黎曼几何更准确一些。

标签 装饰 非欧几何 欧氏几何 全等 射影 | 编辑标签

取消

  • 字体:中
  • 更多
    • 设置置顶
    • 权限设置
    • 推荐日志
    • 转为私密日志
  • 删除
  • 编辑
  • 复制地址

    请用Ctrl+C复制后贴给好友。

签名档

修改 一切有为法,如梦幻泡影,如露亦如电,应作如是观

取消

上一篇:一位年轻女董事长...

下一篇:佛家四大经典爱情...

|返回日志列表

评论

隐藏评论签名

还没有人发表评论  来坐第一个沙发

提示腾讯公司温馨提示:当前已出现通过网络、电话和短信等途径假冒中奖网站、“400”“0898”开头电话、宣称低价购物、购房退税等手段诈骗,请您提高警惕,慎防遭骗。识别更多网络骗术,请点击:腾讯反骗术帮助中心。

    发表评论

    系统正在进行升级维护中,暂不支持日志评论,敬请谅解!

     

    表情礼物 | 更多功能高级评论编辑器暂时无法加载

    附加功能展开收起  

    设置

    马上开通空间,体验权限日志、记事本等全新日志体验!取消  (可按Ctrl+Enter发表)