鼻炎引发耳朵痛:蛋白质与疾病

来源:百度文库 编辑:九乡新闻网 时间:2024/05/02 01:41:32
蛋白质与疾病(2009-04-17 12:20:42)

《中国居民平衡膳食宝塔》图片      http://blog.sina.com.cn/s/blog_5339bc700100cwoz.html


   在《痰症与补》中,我从食物热效应的角度谈了一下蛋白质。蛋白质食物热效应比较高,消化起来比较费力气,脾胃虚弱或者有脾胃病的人每天的摄入量应该比标准的应摄入量稍低一点,这样才能给脾胃休息的机会,慢慢恢复功能。本篇想继续谈谈蛋白质与疾病的关系。
    人体内有很多物质是靠蛋白质代谢生成的,有神经递质、嘌呤、嘧啶、磷脂、卟啉、辅酶等,因此蛋白质是生命运动必不可少的物质。同时蛋白质代谢也能产生代谢废物——尿酸和尿素氮。
    当蛋白质摄入过多的时候,体内生成的代谢产物什么组胺、嘌呤的会随之增多,代谢废物尿酸、尿素也会增多。体内组胺增多会引发过敏;嘌呤增多会引发痛风;尿酸、尿素氮需要经肾脏过滤排出,会增加肾脏负担。民谚有一句话说得好:肉生痰鱼生火;从中医的角度看,蛋白质是生痰生火的东西,蛋白质代谢多余的产物和废物堆积在体内会成为痰、湿、火,稍微感受外邪就可能发作痰火症、痰湿症和湿热症。由此可见,高蛋白饮食会提高慢性肾病、痛风、过敏等疾病的患病几率。
    既然蛋白质不易吸收,产生的代谢产物又可能成为毒素、增加排泄负担,为什么人们还是那么喜欢高蛋白饮食呢?应该还是怕身体缺营养长不好吧。特别是父母,从孩子能吃辅食开始就给他们进食蛋白质丰富的食物:鱼、虾、猪肉、鸡肉、鸡蛋、牛奶,每天肯定不只给一两种。这说明家长普遍只关注有没有吃进去,认为吃进去了就是营养给足了,并没有考虑吃进去以后的事。这种观念是不正确的,蛋白质只是人体需要的三大营养素之一,我们还需要脂肪、碳水化合物,以及矿物质和维生素等物质。过多摄入某一种营养素,会抑制其他营养素的吸收,对身体是不利的。比如说:植物纤维和钙会降低铁的吸收,也就是说多吃了牛奶和蔬菜,铁就吸收不了了;纤维素和草酸会降低钙的吸收,水果蔬菜好吧,多吃了就缺钙。好多家长听说蛋白质好,就给多吃肉、奶;听说水果蔬菜好,就给多吃水果蔬菜。结果什么都吃得多,就是粮食吃不多。由于营养素之间互相影响,身体需要的营养素吸收不了,多余的的营养素倒挺多,这些多余的营养素要么成了毒素、成了身体的负担,要么压根就不吸收,在肠道就被排出去了。身体该有的没有,不该多的挺多,能不生病吗?所以说,要辩证地看蛋白质这种营养素,它确实是必不可少的,但同时也是必不可多的,少了是蛋白质缺乏,体力不足、生病;多了是毒素增多、某些微量元素缺乏,照样体力不足、生病。
    我们要懂得建立平衡的饮食观,中医说五行相生相克,营养也一样相生相克,各种营养素都是不能多不能少的,必须找一个平衡点。卫生部制定的《中国居民平衡膳食宝塔》是国人营养膳食搭配的标准,虽然我不是全部认同(我个人的标准比这还要素),但确实体现了平衡膳食的观念。贴出来给大家看看,估计很多朋友是连这上面的要求都做不到的,肉、鱼、蛋类食物摄入总量超过200克的人比比皆是。(图上的重量为生重)
  为什么要平衡饮食?(2009-05-08 12:22:37)http://blog.sina.com.cn/s/blog_5339bc700100d8f8.html 我经常建议友人要建立平衡饮食观,但是友人们对平衡饮食这个词很陌生,并不理解。就这篇文章,谈谈什么是平衡饮食,为什么要平衡饮食。
    现在的人很喜欢说一句话:xx很好、很有营养,平时要多吃点。xx可以是某种水果,某种肉类或者某种食材,还可以是某种保健品。听到这句话的人,大多会对xx这种食物另眼相看并经常买来吃。这些人是怕不吃这些好东西身体会缺营养,体质会变差、容易生病。这个出发点是无可厚非的,谁不想好身体,谁不想营养充足哦。
    我们要营养充足,就要知道营养充足是立体的,不是一种营养充足,而是要全方位的营养都不缺少。营养素也互相影响,过多的摄入一种食物,营养成分过于单调,反而会导致其他营养素的缺乏,不利于均衡营养。另外,现在的肉类、鱼类都是饲料养的,还不时听说饲料里面会添加抗生素、避孕药;罐头、饮料不用多说,肯定有防腐剂;就连水果都还用催熟剂催熟。在这种情况下,过多的摄入一种食物,很可能导致毒素累积过量、集中发病。
    为了避免食物营养单一造成的其他营养素缺乏和毒素积累过量,应该建立起平衡的饮食观:什么都吃,粮食为主。粮食提供基本能量以后,根据《中国居民膳食宝塔》,各种食物每天都吃一点。这个问题在我写的肠胃和肥胖类文章里面不止一次地提出来,但是多数人都认为《宝塔》好是好,就是称重麻烦,以为我是叫他们称重来了。其实我的意思并不是这样的,重要的不在称重,而在心里形成这种平衡饮食观念。一种食物会吃多了,无非就是老想着它的好,会在无意中多吃的。只要每次想起某种东西好,要情不自禁去多吃的时候就提醒自己:平时吃的所有东西都是好东西,一个都不能少,单一品种吃多了会影响其他营养的吸收,甚至造成身体负担,那么你就不会无意中吃多了某种食物了。
    以前有个朋友,听说鸡蛋营养丰富,正巧她女儿喜欢吃鸡蛋,于是情不自禁地每天给她两三个,甚至三四个。孩子吃得开心,妈妈也觉得孩子是补充营养,并没有想到这样饮食不平衡、不健康。后来孩子经常患鼻炎,过敏性的,她都不理解为啥。我让她少吃鸡蛋,别觉得好就吃多了,鸡蛋能量高,容易吃饱,难消化,吃得太多伤阳气,会影响吃其他东西。营养素偏了一边,又伤了阳气,自然就容易鼻炎、过敏。后来她听我的劝,不再因为鸡蛋好,孩子喜欢就多给,鼻炎就不再频繁发作了。
    平衡饮食是一种观念,不是说非要一天这种吃多少、那种吃多少,拿着秤砣过日子。而是要打破好东西要多吃的观念,时刻提醒自己和家里人不要偏食某种“好东西”,慢慢养成啥都吃一点,而且都不多,以粮食为主的习惯。这样才能真正保证各种营养素均衡充足。   卡路里限制Calories Restrictions 与长寿(2009-06-20 10:10:35)http://blog.sina.com.cn/s/blog_5339bc700100dv8h.html 引文:本篇是我的一位中科院营养学博士朋友的研究心得,文章罗列了一些实验数据和结果,英文部分是参考文献资料。文章里面的名词和研究数据大家可能会看得不太明白,但他这里清晰地表达了一个观点:某种营养素(蛋白,脂肪,维生素,矿物质等)过多会导致营养不良,摄入热量相当的情况下限制蛋白的饮食有延长寿命的作用。劝谕那些认为蛋白质就是营养价值高,长期高蛋白饮食的朋友们,要建立平衡饮食观,不要迷信这种饮食能身体健康、延年益寿,单一营养素过剩一样能导致营养不良。

 

    卡路里限制(Calories Restrictions)指的是一种饮食方式,现在认为这种方式通过限制饮食能量摄入,达到有益健康延缓衰老的效果。卡路里限制是迄今为止唯一一种被报道的可以在包括啮齿类动物,鱼类,狗,酵母的多种生物中同时延长平均寿命和最长寿命。寿命延长的程度不同,老鼠和线虫可以延长30-40% (Mattson 2005)。

    卡路里限制能否延长人的寿命,现在还不确定。在已有的调查中发现,卡路里限制可以减轻超重者的体重,并且降低他们的胆固醇,饥饿时的血糖和血压。2009年的一篇报道指出卡路里限制可以改善老年人的记忆 (Witte, Fobker et al. 2009)。但是也有实验表明长期卡路里限制会导致体重过轻营养不良等多种副作用(http://www.netwellness.org/question.cfm/37350.htm) 。因此人们想寻求一种两全其美的饮食方式,既可以达到延缓衰老的目的又能使身体保持良好的状态。

    很多研究者在控制摄入能量的前提下,通过改变饮食结构来寻找一种健康合理的饮食。值得一提的是这种饮食被称为饮食限制,而非卡路里限制。尽管近70年的研究表明,饮食限制导致长寿的主要原因就是由控制饮食而引起的卡路里摄入减少 (Masoro 1990)。但是有越来越多的实验表明,至少在线虫和老鼠中,限制某种营养成分的摄入已足以延长寿命 (Mair, Piper et al. 2005; Miller, Buehner et al. 2005)。例如在线虫中,降低酵母(酵母是线虫的食物,一般认为酵母主要为线虫提供蛋白质)和糖类摄入量,尽管总的能量摄入没有改变,线虫寿命已可以有效延长 (Mair, Piper et al. 2005)。这些发现似乎为人们带来一些希望,既不需要饿肚子,又可以达到营养均衡健康长寿的目的。

    所谓营养均衡是指摄入的营养与身体所需保持一致。营养不良是指两者之间没有到达平衡。一般我们都认为低蛋白质摄入饮食可以导致营养不良,现在发达国家中的调查显示某种营养素(蛋白,脂肪,维生素,矿物质等)过多都会导致营养不良。就如人们平常所说的过犹不及。营养不良包括营养不足和营养过剩,在外形上可能成瘦或者胖两种截然不同的形式。无论胖瘦,营养不良都可以引起肌肉减少,脏器偏小(例如肾脏中肾小球数目减少,胰岛中β细胞数目减少),免疫力低下。营养过剩导致的营养不良还可能形成肥胖病,高血压和某些癌症。有研究发现,在保证营养足够的条件下,卡路里和蛋白限制的饮食可以提高人的对于乙肝病毒和疟疾的抵抗能力,并且延迟或者阻止癌症或者癌细胞转移和许多与年龄相关的疾病,例如心血管疾病,糖尿病并同时延长寿命(Yu, Masoro et al. 1985; Holliday 1989; Weindruch 1996)。研究者发现低蛋白饮食(1.5%酪素)与高蛋白饮食(20%酪素)老鼠相比,不仅体重增长明显较少,脾脏和肝脏也较轻。需要提出的是,实验中高蛋白饮食和低蛋白饮食的能量是一样的。为什么蛋白含量改变会引起这么明显的变化,人们还不清楚。因为饮食中还有很多功能不详的或者未知的营养素,他们的作用也不清楚。但是这一研究起码提示,蛋白质,并非人们认为的那样,越多越好

    特别是现在人们出于爱美或者其他因素热衷于控制能量摄入,很多人为了所谓的营养,就提高饮食中蛋白的含量,降低其他营养成分摄入。这种做法显然不可取。

 

Holliday, R. (1989). "Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation?" Bioessays 10(4): 125-7.

                Calorie restriction results in an increased lifespan and reduced fecundity of rodents. In a natural environment the availability of food will vary greatly. It is suggested that Darwinian fitness will be increased if animals cease breeding during periods of food deprivation and invest saved resources in maintenance of the adult body, or soma. This would increase the probability of producing viable offspring during an extended lifespan. The diversion of limited energy resources from breeding to maintenance of the soma is seen as an evolutionary adaptation, fully compatible with the 'disposable soma' theory of the evolution of ageing.

 

http://www.netwellness.org/question.cfm/37350.htm.

               

Mair, W., M. D. Piper, et al. (2005). "Calories do not explain extension of life span by dietary restriction in Drosophila." PLoS Biol 3(7): e223.

                Dietary restriction (DR) extends life span in diverse organisms, including mammals, and common mechanisms may be at work. DR is often known as calorie restriction, because it has been suggested that reduction of calories, rather than of particular nutrients in the diet, mediates extension of life span in rodents. We here demonstrate that extension of life span by DR in Drosophila is not attributable to the reduction in calorie intake. Reduction of either dietary yeast or sugar can reduce mortality and extend life span, but by an amount that is unrelated to the calorie content of the food, and with yeast having a much greater effect per calorie than does sugar. Calorie intake is therefore not the key factor in the reduction of mortality rate by DR in this species.

 

Masoro, E. J. (1990). "Assessment of nutritional components in prolongation of life and health by diet." Proc Soc Exp Biol Med 193(1): 31-4.

                Restricting the food intake of rodents extends the median length of life and the maximum life-span. It also retards most age-associated physiologic change and age-associated diseases. Our research indicates that the ability to retard disease processes is not the major reason for the extension of life-span or for the retardation of age change in most physiologic systems. Rather, it appears that most of the actions of food restriction are due to its ability to slow the primary aging processes. We found this action to relate to the restriction of calories rather than specific nutrients (e.g., protein or fat or minerals). Our findings point to the reduction in caloric intake per rat rather than per gram lean body mass as the basis of the retardation of aging processes by food restriction. The challenge is to learn how caloric intake per rat is coupled to the aging processes. We are currently focusing on the possibility that neural and endocrine mechanisms are involved. Our preliminary findings point to the likelihood of an involvement of the insulin-glucose system.

 

Mattson, M. P. (2005). "Energy intake, meal frequency, and health: a neurobiological perspective." Annu Rev Nutr 25: 237-60.

                The size and frequency of meals are fundamental aspects of nutrition that can have profound effects on the health and longevity of laboratory animals. In humans, excessive energy intake is associated with increased incidence of cardiovascular disease, diabetes, and certain cancers and is a major cause of disability and death in industrialized countries. On the other hand, the influence of meal frequency on human health and longevity is unclear. Both caloric (energy) restriction (CR) and reduced meal frequency/intermittent fasting can suppress the development of various diseases and can increase life span in rodents by mechanisms involving reduced oxidative damage and increased stress resistance. Many of the beneficial effects of CR and fasting appear to be mediated by the nervous system. For example, intermittent fasting results in increased production of brain-derived neurotrophic factor (BDNF), which increases the resistance of neurons in the brain to dysfunction and degeneration in animal models of neurodegenerative disorders; BDNF signaling may also mediate beneficial effects of intermittent fasting on glucose regulation and cardiovascular function. A better understanding of the neurobiological mechanisms by which meal size and frequency affect human health may lead to novel approaches for disease prevention and treatment.

 

Miller, R. A., G. Buehner, et al. (2005). "Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance." Aging Cell 4(3): 119-25.

                A diet deficient in the amino acid methionine has previously been shown to extend lifespan in several stocks of inbred rats. We report here that a methionine-deficient (Meth-R) diet also increases maximal lifespan in (BALB/cJ x C57BL/6 J)F1 mice. Compared with controls, Meth-R mice have significantly lower levels of serum IGF-I, insulin, glucose and thyroid hormone. Meth-R mice also have higher levels of liver mRNA for MIF (macrophage migration inhibition factor), known to be higher in several other mouse models of extended longevity. Meth-R mice are significantly slower to develop lens turbidity and to show age-related changes in T-cell subsets. They are also dramatically more resistant to oxidative liver cell injury induced by injection of toxic doses of acetaminophen. The spectrum of terminal illnesses in the Meth-R group is similar to that seen in control mice. Studies of the cellular and molecular biology of methionine-deprived mice may, in parallel to studies of calorie-restricted mice, provide insights into the way in which nutritional factors modulate longevity and late-life illnesses.

 

Weindruch, R. (1996). "The retardation of aging by caloric restriction: studies in rodents and primates." Toxicol Pathol 24(6): 742-5.

                Caloric restriction (CR), which has been investigated by gerontologists for more than 60 yr, provides the only intervention tested to date in mammals (typically mice and rats) that repeatedly and strongly increases maximum life span while retarding the appearance of age-associated pathologic and biologic changes. Although the large majority of rodent studies have initiated CR early in life (1-3 mo of age), CR started in midadulthood (at 12 mo) also extends maximum life span in mice. Two main questions now face gerontologists investigating CR. By what mechanisms does CR retard aging and disease processes in rodents? There is evidence to suggest that age-associated increases in oxidative damage may represent a primary aging process that is attenuated by CR. Will CR exert similar actions in primates? Studies in rhesus monkeys subjected to CR and limited human epidemiological data support the notion of human translatability. However, no matter what the answers are to these questions, the prolongation of the health span and life span of rodents by CR has major implications for many disciplines, including toxicologic pathology, and raises important questions about the desirability of ad libitum feeding.

 

Witte, A. V., M. Fobker, et al. (2009). "Caloric restriction improves memory in elderly humans." Proc Natl Acad Sci U S A 106(4): 1255-60.

                Animal studies suggest that diets low in calories and rich in unsaturated fatty acids (UFA) are beneficial for cognitive function in age. Here, we tested in a prospective interventional design whether the same effects can be induced in humans. Fifty healthy, normal- to overweight elderly subjects (29 females, mean age 60.5 years, mean body mass index 28 kg/m(2)) were stratified into 3 groups: (i) caloric restriction (30% reduction), (ii) relative increased intake of UFAs (20% increase, unchanged total fat), and (iii) control. Before and after 3 months of intervention, memory performance was assessed under standardized conditions. We found a significant increase in verbal memory scores after caloric restriction (mean increase 20%; P < 0.001), which was correlated with decreases in fasting plasma levels of insulin and high sensitive C-reactive protein, most pronounced in subjects with best adherence to the diet (all r values < -0.8; all P values <0.05). Levels of brain-derived neurotrophic factor remained unchanged. No significant memory changes were observed in the other 2 groups. This interventional trial demonstrates beneficial effects of caloric restriction on memory performance in healthy elderly subjects. Mechanisms underlying this improvement might include higher synaptic plasticity and stimulation of neurofacilitatory pathways in the brain because of improved insulin sensitivity and reduced inflammatory activity. Our study may help to generate novel prevention strategies to maintain cognitive functions into old age.

 

Yu, B. P., E. J. Masoro, et al. (1985). "Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics." J Gerontol 40(6): 657-70.

                The aims of this research were (a) to compare food restriction initiated in adult life of male Fischer 344 rats with that limited to early life or involving most of the life span on physical, metabolic, and longevity characteristics and (b) to study a similar level of protein restriction without caloric restriction on these characteristics. Food restriction (60% of the ad libitum intake) initiated at 6 months of age markedly increased life span as did a similar restriction started at 6 weeks of age, but food restriction limited to early life (6 weeks to 6 months of age) and protein restriction caused only a small increase in longevity. Food restriction does not act by reducing the intake of calories or other nutrient per gram of body mass, a finding not in accord with classic views. A progressive decrease in spontaneous locomotive activity with age occurred in ad libitum fed but not restricted rats.