重大会计差错处罚:《环球科学》:7大颠覆性技术破解能源危机(4)

来源:百度文库 编辑:九乡新闻网 时间:2024/05/04 07:26:01

《环球科学》:7大颠覆性技术破解能源危机(4)

http://www.sina.com.cn  2011年06月24日 14:34  环球科学杂志

  家用电器

  磁体制冷机

  能为冰箱和房间制冷的特殊合金

家用电器磁体制冷机

  撰文 蔡宙( Charles Q. Choi)

  在日常生活中,我们通常使用空调、冰箱和冰柜来制冷,但它们都需要能量驱动,所消耗的电能占到美国家庭耗电量的1/3。而一项依赖于磁体的全新制冷技术,能显著降低这部分能耗。

  大多数商业化制冷机,都是通过反复压缩和膨胀气体或液体制冷剂来制冷。随着制冷剂的循环,能将热量从房间或设备中吸出带走。然而,压缩机的能耗巨大,并且要是最常用的那些制冷气体泄漏出去的话,它们的每一个分子对大气层的加热效率要比一个二氧化碳分子至少高1 000倍。

  美国宇航公司(Astronautics Corporation of America)的研究人员正在研发一种不使用压缩机,而是基于磁体的新型制冷机。从某种程度上来说,所有磁性材料都会在被置入磁场后升温,在移出磁场后降温,这一特性被称为“磁致热效应”(magnetocaloric effect)。原子通过自身振动贮存能量;而当外加磁场将金属中的电子有序排列,并阻止它们自由移动时,金属原子的振动就会加强,温度随之增加。移除磁场后,温度则会降低。虽然这一效应早在1881年就被发现,但它的商用价值却一直被人忽视。这是因为,从理论上来说,只有在极低的温度下使用超导磁体,才能将这种效应最大化到产生可利用的效果。然而在1997年,美国能源部爱艾姆斯实验室(U.S. Department of Energy’s Ames Laboratory)的材料科学家偶然发现,一种由钆、硅和锗构成的合金能在室温下显示出巨大的磁致热效应。自那时起,美国宇航公司还陆续把注意力集中在具有同样性质的其他合金上。

  目前,美国宇航公司正在设计一种空调,目标是为面积约100平方米的公寓或住宅制冷。这种空调里有一个小而平的、由某种此类合金制成的多孔楔形体构成的圆盘。在圆盘两侧,固定着一个环形永磁体。磁体中空,里面分布着强磁场。当圆盘旋转时,每一个磁致热楔形体会通过这个通道而升温,然后继续转出磁场范围而冷却。在系统内部循环的液体被这些旋转的楔形体反复加热和冷却,冷却后的液体就能从房间中吸走热量。精心设计的磁体能够防止磁场从设备中溢出,所以它不会影响到附近的电子仪器或人身上的心脏起搏器。

  在传统制冷机中,核心部件是压缩机。而在磁体制冷机中,核心部件是带动圆盘旋转的马达,而马达通常要比压缩机的能量效率高得多。美国宇航公司的目标是在2013年制造出一台原型机,能在达到同样制冷能力的情况下将耗电量降低1/3。磁体制冷机还有一个额外的显著优点:它只是用水来输送热量,“你没法找到比水更环保的材料了,”美国宇航公司技术中心经理史蒂文·雅各布斯(Steven Jacobs)说。

  但是别说把这项技术实际应用于冰箱和冰柜,即便是仅仅制作一台原型机,也需要跨过许多障碍。首先,如何控制水流通过多孔的楔形体就是个棘手的问题,因为圆盘要以每分钟360~600转的速度高速旋转。此外,磁体由一种昂贵的钕—铁—硼合金制成,因此,如果要想商业化生产,在仍能保持提供足够强磁场的前提下尽可能小型化也是必要的。正如加拿大维多利亚大学(University of Victoria)的机械工程师安德鲁·罗(Andrew Rowe)所说:“这是一项高风险技术,但它有巨大的应用潜力,而且就其突出的性能而言,也值得去努力。”

  研究人员还在试验其他一些特殊制冷技术。美国Sheetak公司,正在研发一种完全不使用制冷剂的制冷设备,它依赖于一种所谓的“热电材料”(thermoelectric material),充电时,这种材料的一面变冷,而另一面变热。不管怎样,降低燃料消耗和减少温室气体排放总会为我们带来一个清凉的世界。

  排放处理

  更清洁的煤炭

  用盐来吸收火电厂排放的碳

排放处理更清洁的煤炭

  撰文 迈克尔· 勒莫尼克( Michael Lemonick)

  煤炭是美国最便宜、最丰富的能源,但由于含碳量最高,它也是引起气候变化的主要原因。工程师设计出了多种途径和方法,以在火力发电厂排放废气前清除掉其中的二氧化碳,但这么做的最大问题是,这些工序会消耗煤炭燃烧所产生能量的30%,让所谓的“可清洁燃烧煤炭”概念难以令人信服。

  然而,清除废气中二氧化碳的设想确实令人向往,所以,美国能源部高级研究计划局能源项目部以及其他一些机构,一直都在为此类可能降低该工序能耗的研究提供资金支持。

  其中,美国圣母大学能源中心(University of Notre Dame’s Energy Center)的一种设计尤其引人注目,他们使用了一种被称为“离子液体”(ionic liquid,本质就是一种盐)的新型材料。这种材料的第一个好处是,它所能吸收二氧化碳的量,两倍于其他化学结构类似的碳吸收材料。另一个优点是,在吸收过程中,这种盐会经历一个从固态到液态的相变,这种变化释放的热量能被回收利用,将碳从液体中汲出,便于后续处置。

  “我们的模型显示,应该能将(除碳工序的)能耗降低到22%或23%,” 能源中心主任、化学工程师琼·F·布伦内克(Joan F. Brennecke)说,“我们希望最终能降低到15%。”她的研究团队正在制造一个实验室规模的装置来演示这项技术。

  这一技术听起来还只是个理论设想,事实上也的确如此。“这是一个全新的概念,”布伦内克承认,“因为这些材料完全是最新的,”它们出现只有短短两年。布伦内克的研究团队的工作也才刚刚起步,无法预料的困难可能随时出现。即便这一过程在实验室里被证明是成功的,把它的规模放大到能应用于发电厂的级别,或许也不可行。

  另外,如果碳汲取过程确实有效,收集到的碳又该如何存放?科学家眼中的最佳解决办法是将它们注入地下多孔的岩石结构中,即所谓的“封存”(sequestration),这种方式已经过实地检验,但还缺乏大规模应用的验证(参见《环球科学》2000年第10期《埋葬二氧化碳》)。另一种离实用更遥远的概念是,将二氧化碳与硅酸盐混合,即人为复制自然界中二氧化碳被束缚进碳酸盐岩石的过程,使它丧失活性。

  除了以上提到的这些困难,那些在煤矿开采和处理毒煤灰过程中的健康和环境威胁,都会让环保人士一听到“清洁煤炭”四个字就火冒三丈。