:基因——人类最伟大的十个科学发现之八

来源:百度文库 编辑:九乡新闻网 时间:2024/04/23 19:40:24
基因——人类最伟大的十个科学发现之八 作者:塔米姆·…    文章来源:科技园    点击数: 50    更新时间:2006-12-27

 

世界著名的网络科普作家塔米姆·安萨利(Tamim Ansary)在其新著(10 Great Scientific Discoveries)中总结了对人类社会发展有重大影响的、最伟大的十个科学发现。这之中,我们有的了如指掌,有的似熟悉的陌生人,但不管怎样,这些跨越了漫长历史时空的科学人物、科学故事,实实在在地能给予我们深刻的感动与启示。

本站将陆续推出这十大科学发现的故事,它们分别是勾股定理微生物的存在三大运动定律物质结构血液循环电流物种进化、基因、热力学四大定律、光的波粒二相性,敬请关注。 

基因——人类最伟大的十个科学发现之八

塔米姆·安萨利

现代遗传学之父、奥地利生物学家格雷戈尔·孟德尔(Johann Gregor Mendel,1822-1884)(如右图)并未描述过基因,也没有观测到基因以及使用基因这个词。但这位奥地利传教士发现了遗传定律,他通过繁育豌豆,画出其结果图,就得出了卓越的结论。孟德尔发现,在预先可测知规律下控制的组合,父母可将其独特的特性传给子女。

20世纪初,科学家判定必然是某些实际的物质携带这种特性,创立了基因(gene)这个词,以后又证明了基因的化学本质是DNA分子。1953年,发现了DNA的双螺旋结构。

孟德尔出生在奥地利的一个贫寒的农民家庭里,受同为园艺家的父母的熏陶,他从小喜爱植物。他先在当地教会办的一所中学教自然科学,后来到维也纳大学深造,受到相当系统和严格的科学教育与训练,为后来的科学实践打下了坚实的基础。孟德尔回到布鲁恩后弄来了34个品种的豌豆,从中挑选出22个品种用于实验。它们都具有某种可以相互区分的稳定性状,例如高茎或矮茎、圆料或皱科、灰色种皮或白色种皮等。

孟德尔豌豆实验的初衷并不是有意为探索遗传规律而进行,他只是希望获得优良品种,在试验的过程中,逐步把重点转向了探索遗传规律。孟德尔开始进行豌豆实验时,达尔文进化论刚刚问世。他仔细研读了达尔文的著作,从中吸收丰富的营养,并对人工培植的不同代的豌豆的性状和数目(如右图)进行细致入微的观察、计数和分析。运用这样的实验方法需要极大的耐心和严谨的态度。经过8个寒暑的辛勤劳作,孟德尔发现了生物遗传的基本规律,并得到了相应的数学关系式。人们分别称他的发现为“孟德尔第一定律——分离定律”和“孟德尔第二定律——独立分配定律”,它们揭示了生物遗传奥秘的基本规律。除了豌豆以外,孟德尔还对其它植物作了大量的类似研究,其中包括玉米、紫罗兰和紫茉莉等,以期证明他发现的遗传规律对大多数植物都是适用的。

从生物的整体形式和行为中很难观察并发现遗传规律,而从个别性状中却容易观察,这也是科学界长期困惑的原因。孟德尔不仅考察生物的整体,更着眼于生物的个别性状,这是他与前辈生物学家的重要区别之一。孟德尔选择的实验材料也非常科学。因为豌豆属于具有稳定品种的自花授粉植物,容易栽种,容易逐一分离计数,这对于他发现遗传规律提供了有利的条件。

孟德尔清楚自己的发现所具有的划时代意义,但他还是慎重地重复实验了多年,以期更加臻于完善。1865年,孟德尔总结出著名的遗传规律,在布尔诺(Brno)自然科学学会宣读了他的论文《植物杂交试验》(Experiments in Plant Hybridization),尽管与会者绝大多数是学会会员,其中既有化学家、地质学家和生物学家,也有生物学业的植物学家、藻类学家。但听众对连篇累续的数字和繁复枯燥的论证毫无兴趣,他们跟不上孟德尔的思维,因此无法估计孟德尔发现的重要性。第二年,孟德尔在学会杂志上发表了他得到的试验结果,也没有引起科学界的注意。孟德尔的论文在此后30余年中未被科学界所知。

 

德弗里斯(如右图)1877年曾到英国拜访达尔文并有过一次长谈,这使他专心致志于解决当时进化论所面临的最大问题:遗传机理。像孟德尔一样,他以植物为研究材料,不过他用的是月见草。他种了二十年超过五万株的月见草,从中发现了新种。他认为这些新种是由于“突变”导致的,并认为突变是产生变异的原因。现在已知道,他所发现的这些新种并不是基因突变,而是染色体畸变所致,不过他仍然被视为发现基因突变的第一人。之后,他就转往研究性状的传递问题。1900年,德弗里斯认为自己已发现了遗传定律,写成论文,分寄法兰西科学院和德国植物学学会。法语版的论文先登了出来,柯灵斯读了以后,发觉实际上就是孟德尔所发现的定律,就给德弗里斯寄去了一份孟德尔的论文。德弗里斯赶在德语论文出来之前,匆忙在论文中加注了孟德尔的论文,但声明“在实验就要全部完成并已得出结论后,才读到孟德尔的论文”。

柯灵斯(如下左图)也在做植物杂交的实验,在德弗里斯之后也赶紧发表了实验结果。他在论文中提到了孟德尔,但也像德弗里斯一样,声明是在自己独立地发现了遗传定律之后才读到孟德尔的论文的。

   

契马克(如上右图)也在几星期后发表了论文,在论文中引用了孟德尔,但同样称自己独立地发现了遗传定律,然后才验证孟德尔的实验。

不论他们发表论文的动机如何,这三位著名的生物学家在一年之内同时发表论文宣扬孟德尔,使孟德尔定律很快引起了生物学界的重视。生物学界掀起了验证孟德尔定律的热潮。

1909年,丹麦生物学家约翰逊(Wilhelm Ludwig Johannsen,1857-1927)(如右图)根据希腊文“给予生命”之义,创造了基因(gene)一词,并用这个术语代替孟德尔的“遗传因子”。不过他所说的基因并不代表物质实体,而是一种与细胞的任何可见形态结构毫无关系的抽象单位。因此,那时所指的基因只是遗传性状的符号,还没有具体涉及基因的物质概念。

    

美国遗传学家摩尔根(Thomas Hunt Morgan,1866-1945)(如上左图)对基因学说的建立作出了卓越的贡献。1915年至1928年,他和他的助手以果蝇(如上右图)作为实验材料,第一次将代表某一特定性状的基因,同某一特定的染色体联系了起来,创立了遗传的染色体理论。随后遗传学家又应用当时发展的基因作图(gene mapping)技术,构筑了基因的连锁图,进一步揭示了在染色体载体上基因是按线性顺序排列的。

   

首先用实验证明基因的化学本质就是DNA分子的是加拿大生物化学家艾弗里(Oswald Theodore Avery,1877-1955 )(如上左图)。1945年,他和他的合作者在纽约进行细菌转化的研究(如上右图),实验材料是肺炎链球菌,结果说明,使细菌性状发生转化的因子是DNA(即脱氧核糖核酸),而不是蛋白质或RNA(即核糖核酸)。

这一重大的发现轰动了整个生物界。因为当时许多研究者都认为,只有像蛋白质这样复杂的大分子才能决定细胞的特征和遗传。而艾弗里等人的工作打破了这种信条,在遗传学理论上树起了全新的观点,即DNA分子是遗传信息的载体。

 当人们为艾弗里的实验而激烈争论时,美国微生物学家赫尔希(Alfred Day Hershey,1908-1997)(如右图)等人在考虑,能否将蛋白质和DNA完全分开,单独观察DNA的作用呢?他们的实验材料是T2噬菌体。实验证实,进入细菌细胞的噬菌体是核酸;进而说明,携带遗传信息的是核酸,而不是蛋白质。噬菌体的DNA不但包括噬菌体自我复制的信息,而且包括合成噬菌体蛋白质所需要的全部信息。1952年,赫尔希和他的学生共同发表报告,肯定了艾弗里的结论。此后,再也无人怀疑DNA是遗传物质了。

英国生物物理学家阿斯特伯里(William Thomas Astbury,1898-1961)如下左图)1938年曾通过X射线结晶衍射图发现DNA分子是多聚核苷酸分子的长链排列。然而阿斯特伯里所发现的DNA图片极其不清楚,无法真实反映DNA清晰的图像。

 

1950年,爱尔兰科学家威尔金斯(Maurice Wilkins,1916-)(如上右图)的研究小组就测定了DNA在较高温度下的X射线衍射,得到的照片比阿斯特伯里的要精美得多。其中一个主要原因就是他们保持了DNA纤维的湿润状态。DNA的X光衍射照片中有明显的几组点组成了十字的一横,提示DNA的整个结构为螺旋形,但证据并不充分。后来,威尔金斯似乎再也无法深入到更深层面了解DNA的真实结构。

具有非凡才能的英国女科学家罗沙琳德·弗兰克林(Rosalind Franklin,1920-1958)(如下左图)加盟到威尔金斯小组。她凭着独特的思维,设计了更能从多方面了解物质不同现象的实验方法,如获取在不同温度下的DNA的X射线衍射图。把这些各种局部的结构形状汇总,DNA的衍射图片越来越全面。1952年5月她获得了一张清晰的DNA的X光衍射照片。弗兰克林与威尔金斯提出DNA的结构可能是双螺旋。

   

美国化学家鲍林(Linus Pauling,1901-1994)(如上右图)从1951年起就在用同样的X射线晶体衍射方法研究蛋白质的氨基酸和多肽链,最后发现了血红蛋白多肽链为α螺旋链,他成为X射线晶体衍射的权威。鲍林将注意力转到了DNA,并获得了一些DNA的X射线晶体衍射图片。也许是由于实验的问题,或是指导思想的问题,鲍林一直认为DNA是三螺旋结构,走入了误区。

 

1953年,最伟大的模型——DNA双螺旋结构模型被提出来了,两位创立者是美国生物化学家沃森(James Dewey Watson,1928-)(如下左图)和英国生物物理学家克里克(Francis Harry Compton Crick,1916-)(如下右图)。

   

1951年,沃森前往意大利参加生物大分子结构会议。威尔金斯和弗兰克林关于DNA的X射线晶体衍射图分析报告吸引了沃森。博士毕业后沃森在英国的卡文迪什实验室与克里克相遇并共同研究DNA的结构。虽然受到来自威尔金斯和弗兰克林的报告的启发,但是,DNA具体是一个什么样的螺旋结构,是双链、三链还是四链的,沃森和克里克心中并没有谱。

起初,沃森与克里克认为DNA的螺旋结构应该是三螺旋,并从鲍林那里获得启示开始了“搭积木”式的研究(如右图)。因为鲍林发现血红蛋白的α螺旋链就是靠“搭积木”摆弄出来的。许多化学分子的结构模型都是这样被人们认识的。

沃森与克里克按照他们的理解搭出了DNA三螺旋的结构。他们认为,这个模型与威尔金斯和弗兰克林提供的X衍射图比较吻合,尽管弗兰克林当时并不知道DNA的精确结构应当是什么样的,但她指出这个模型过分模仿水分子,DNA结构不应当是三螺旋。

沃森和克里克对DNA螺旋结构的数种设想都被威尔金斯和弗兰克林否定。在1953年2月14日的讨论中,威尔金斯出示了一幅弗兰克林获得的非常清晰的DNA晶体衍射照片。这张照片突然激发了沃森头脑中的思维,DNA链只能是双链的才会显示出这样漂亮而清晰的图。1953年2月28日沃森和克里克重新摆弄出了正确的DNA双螺旋结构。1953年4月25日《自然》杂志发表了沃森与克里克的DNA双螺旋结构假说的不到1000字短文《核酸的分子结构——脱氧核糖核酸的一个结构模型》,并配有威尔金斯和弗兰克林的两篇文章,以支持沃森和克里克的假说。后来鲍林和其他科学家的研究也从不同方面证明了DNA双螺旋结构。一个月后,沃森与克里克在《自然》杂志上又发表一篇论文,讨论了遗传物质复制的机制。

沃森和克里克在一封信中对弗兰克林说,她和威尔金斯的DNA双螺旋结构X衍射图片对他们启发很大。正是在这张图片和弗兰克林与威尔金斯的不断指引,他们才走上了正确的跑道,并最终完成了一项具有划时代意义的伟大工作。DNA双螺旋结构的发现标志着分子生物学从此诞生。它不仅说明了DNA为什么是遗传信息的携带者,而且说明了基因的复制和突变等机理。

随着研究的深入,人们已经了解到生物界并非所有的基因都是由DNA构成的。某些病毒和噬菌体,它们遗传体系的基础是RNA,而不是DNA。1956年,德国科学家吉尔(Alfred Gierer)和施拉姆(G.Schramm) 在研究烟草花叶病毒时,首先发现了RNA分子能够传递遗传信息,同时他们还发现烟草花叶病毒的RNA成分在感染的植株叶片中能够诱导合成新的病毒颗粒。(如右图显示了RNA与DNA的比较)

最初由孟德尔提出的遗传因子(hereditary factor)的概念,通过摩尔根、艾弗里、赫尔希和沃森、克里克等数代科学家的研究,已经使生物遗传机制建立在遗传物质DNA的基础之上。 科学家们围绕DNA的结构和作用,继续开展研究,取得了一系列重大进展。1961年,美国生物学家尼伦伯格(Marshall Warren Nirenberg,1927-)(如左图)等人成功破译了遗传密码,以无可辩驳的科学依据证实了DNA双螺旋结构的正确性。人们对遗传机制有了更深刻的认识。现在,基因已经是以一种真正的分子物质呈现在我们面前,再也不是一种神秘成分了。科学家可以像研究其它大分子一样,客观地探索基因的结构和功能,并已经开始向控制遗传机制、防治遗传疾病、合成生命等更大的造福于人类的工作方向前进。