鼬真传光明篇是漫画吗:更加安全的量子密码技术

来源:百度文库 编辑:九乡新闻网 时间:2024/04/24 02:40:54
在IBM的华生实验里,量子计算领域的创始者之一班奈特根据量子力学的原理,正在发明一种新的加密技术——量子密码技术,这一技术将使未来的密码使用更安全。

在这个实验里,他们让光子在一个昵称为“马莎阿姨的棺材”的光密盒里走了30厘米。光子振荡(偏振化)的方向,代表一连串量子位里的0与1。量子位构成密码的“钥匙”,可以对信息加密或解密。窃听者之所以刺探不到钥匙,是由于海森堡的测不准原理——这是量子物理的基础之一,当我们在测量量子态的某个性质时,会使另一个性质受到扰动。在量子密码系统里,任何窃取者在偷看光子束时都会更动到它,而被发送者或接收者察觉。原则上,这种技术可以做出无法破解的秘密钥匙。

从班奈特办公桌上的临时设计一直发展至今,量子密码技术已经有了长足的进展。现在美国国防安全署或联邦准备银行已经可以向两家小公司购买量子密码系统,而且未来还会有更多的产品。这种加密的新方法结合了量子力学与信息论,成了量子信息科学的第一个主要商品。未来,从这个领域诞生的终极技术可能是量子计算机,它将具有超强的译码能力,而要避免密码遭破解的唯一方法,可能得用上量子密码技术。

现代的密码专家所遇到的挑战是,如何让发送者与接收者共同拥有一把钥匙,并保证不会外流。我们通常用一种称为“公钥加密”(public-key cryptography)的方法发送“秘密钥匙”(简称密钥或私钥),对传送的信息加密或解密。这种技术之所以安全,是因为应用了因数分解[注1]或其它困难的数学问题。要计算两个大质数的乘积很容易,但要将乘积分解回质数却极为困难。目前在公开金钥加密法中,最常用到的RSA密码算法,就是应用因数分解的原理。在发送与接收者之间传递的秘密信息,是以“公开钥匙”(简称公钥)加密,这个公钥是一个很大的数,例如408508091(实际上用的数会远大于此)。数据只能以接收者握有的密钥解开,这把密钥是公钥的两个因素,而在这个例子里就是18313与22307。

由于破解“公钥加密”很困难,因此在未来10年甚至更久,密钥的安全性仍旧很高。但是随着量子信息时代的来临(尤其是量子计算机可以快速算出吓人的高难度因素分解)可能预示了RSA及其它密码技术终将失效。英国布里斯托大学电子及电机工程系教授瑞若堤说:“如果量子计算机成真,一切都会不一样。”

量子密码术和“公钥加密”的差别在于,前者在量子计算机出现后仍然牢不可破。要在两端传递量子加密钥匙,其中一种方法就是以激光发出单一光子,光子会以两种模式中的其中一种偏振。光子的第一种偏振方向是垂直或平行(直线模式);第二种则是与垂直呈45度角(对角模式)。不管是哪一种模式,光子的不同指向分别代表0或1这两个数字。依惯例,密码学者通常称发送者为艾丽斯(Alice),她以直线或对角随机模式送出光子,发射出一串位。至于接收者则称为鲍伯(Bob),他也随机决定以两种模式之一来量测射入的位。根据海森堡的测不准原理,他只能以一种模式来测量位,而不能用两种。只有当鲍伯与艾丽斯选用相同的模式时,位的指向才能保证是正确的,不会影响原来的数值。

在传送之后,鲍伯与艾丽斯互相联络,这时不需要保密,鲍伯告诉对方他是用哪种模式接收个别光子。不过他并没有说明各个光子的位是0或1。接着艾丽斯告诉鲍伯他哪些模式的测量方式是正确的。他们会删除没有以正确模式观测的光子,而以正确模式所观测出来的光子便成为钥匙,用以输入算法来对信息加密或解密。

如果有人(称为伊芙,Eve)想拦截这道光子流,由于海森堡原理的关系,她无法两种模式都测。如果她以错误的模式进行测量,即使她将位依照测到的结果重传给鲍伯,都一定会有误差。艾丽斯与鲍伯可以选择性地比较一些位,并检查错误,来侦测是否有窃听者。

从2003年起,瑞士日内瓦的id Quantique公司以及美国纽约市的神奇量子科技公司(MagiQ),都发表了可以传送量子密钥的商品,传送距离超过在班奈特实验里的30厘米。还有美国NEC公司的产品,它传送了150公里远,创下纪录,并在今年初上市。除此之外,IBM、富士通以及东芝等也正在加紧研发。

这些上市的产品,借着一条光纤便可将钥匙传送到几十公里以外的地方。神奇量子科技的产品每个售价7—10万美元。在1999年时创立了神奇量子科技、曾任华尔街量化交易员的葛尔方评论道:“少数顾客正在测试、使用这个系统,不过还未在任何网络上广为配置。”

有些政府及金融机构担心,如果把今天所截获的加密信息存放10年以上,到时候量子计算机就会解开它。美国洛色拉摩斯国家实验室的量子密码研究员休斯,提到一些其它必须长时间保密的信息:人口普查的原始数据、可口可乐的配方,或是商用卫星的指令。量子密码系统的其它可能客户,还包括了提供客户超机密服务的电信业者。

目前,想将量子密码技术放到实际网络上(而非点对点联系)的首次尝试,已经开始在进行。美国国防高等研究计划署资助了一个计划,连接六个网络节点,涵盖麻州剑桥的哈佛大学、波士顿大学,以及BBN科技公司(这家公司在建立因特网上曾扮演关键角色)。密钥通过专用的连结发送,然后将加密过的信息,通过因特网传送出去。BBN负责这项计划的艾略特说:“这可是第一次在实验室外连续操作量子密码网络。”这个网络传送的是一般非机密网络信息,目的只是用来证实这个技术确实可行。艾略特表示:“我想与这里唯一有关的机密,就是哪儿有停车位。”2004年秋天,日内瓦的因特网服务供货商Deckpoint,与id Quantique共同展示了一个网络,可以将日内瓦内的好几个服务器数据备份到10公里外的站台,并通过量子加密网络,频繁地发送新钥匙。

现在的量子密码术仅限在地区性的网络上。这项技术的威力在于,任何人只要刺探钥匙的传送,都一定会更动到钥匙。但这也意味着,我们没办法借着网络设备将携有量子钥匙的讯号放大,然后继续传输到下一个中继器。光学放大器会破坏量子位。

为了扩张连结范围,研究人员正在尝试以光纤之外的媒介传送量子钥匙。科学家爬到山巅(在那样的高度下,大气的干扰可以减到最小),想证明通过大气来发送量子钥匙是可行的。洛色拉摩斯国家实验室在2002年所做的一个实验,建造出一个10公里远的连结。同年,英国法恩堡的QinetiQ,与德国慕尼黑的卢特维格–麦西米连大学合作,在阿尔卑斯山南边两个距离23公里的山顶间做了另一个实验。他们进一步改良技术,例如使用较大的望远镜来侦测、用较佳的滤镜以及抗反射镀膜,希望由此建造出一个系统,收发距离1000公里以上的讯号,这样的距离足以到达低轨道卫星。一个卫星网络便可以涵盖全球。(欧洲太空总署正展开一项计划,要做地面对卫星的实验。欧盟在2004年4月也发起一项计划,要在通讯网路间发展量子密码技术,部分的原因是为了不让梯队系统(Echelon)窃听—这个系统负责截收电子信息,供美、英以及其它国家的情报机构使用。)

密码专家希望最终能够发展出某种形式的量子中继器(quantum repeater),它本质上就是量子计算机的一种基本型式,可以克服距离的限制。中继器能运作,靠的是爱因斯坦著名的“幽灵般的超距作用”(spukhafte Fernwirkungen)。在2004年8月19日的《自然》里,奥地利维也纳实验物理研究院的柴林格和同事发表了中继器的初步成果,他们在多瑙河底的下水道里拉了一条光纤缆线,两端则放置了“纠缠”(entangled)的光子。测量其中一个光子的偏振状态(水平或是垂直等),会使另一端的光子立即产生一模一样的偏振方向。

纠缠的存在让爱因斯坦心里发毛,但是柴林格和他的研究小组利用纠缠的两个光子间的联系特性,将第三个光子的信息远距传输了600米、跨过多瑙河。这样的传送系统可以通过多重中继器而扩展,因此钥匙里的量子位可以越陌度阡、横跨大陆或海洋。要让这件事成真,需发展出奥妙的组件,例如可以实际储存量子位、而不会损坏位的量子内存,然后再将位传送到下一个连结。曾帮忙创设id Quantique、也曾做过远距缠结实验的日内瓦大学教授吉辛(Nicolas Gisin)说:“这些仍在初步阶段,都还在物理实验室里面尝试。”