魔怔吧sb:西塔潘的猜想大三生的答案

来源:百度文库 编辑:九乡新闻网 时间:2022/09/27 21:39:25
西塔潘的猜想大三生的答案

黄兴华

日前,中国科学院李邦河等3名院士分别向教育部写信推荐,请予破格录取中南大学大四学生刘嘉忆为研究生,并建议教育部有关部门立即采取特殊措施,加强对其学术方面的培养。一个名不见经传的学子为何引起科技界前辈如此关注?这缘于近年刘嘉忆通过潜心研究攻克了一个多年未解的国际数学难题。

漂亮的证明

数理逻辑是研究推理的数学分支,也称符号逻辑。在计算机科学和人们的生活中,数理逻辑发挥着重要的理论指导作用。

20108月,酷爱数理逻辑的刘嘉忆在自学反推数学的时候,发现海内外不少学者都在进行反推数学中的拉姆齐二染色定理的证明论强度的研究。这是由英国数理逻辑学家西塔潘于上个世纪90年代提出的一个猜想,10多年来许多研究者一直努力都没有解决。同年10月的一天,刘嘉忆突然想到利用之前用到的一个方法稍作修改便可以证明这一结论,连夜将这一证明写出来,投给了数理逻辑国际权威杂志《符号逻辑杂志》。

今年5月,由北京大学、南京大学和浙江师范大学联合举办的逻辑学术会议在浙江师范大学举行,还是大三学生的刘嘉忆应邀报告了他对拉姆齐二染色定理的证明论强度的研究。刘嘉忆的报告给这一悬而未决的公开问题一个否定式的回答,彻底解决了西塔潘的猜想。

《符号逻辑杂志》的主编、逻辑学专家、芝加哥大学数学系邓尼斯·汉斯杰弗德看到论文后给刘嘉忆写信:“我是过去众多研究该问题而无果者之一,看到这一问题的最终解决感到非常高兴,特别是如你给出的如此漂亮的证明,请接受我对你令人赞叹的惊奇的成果的祝贺!”

论文审稿人、芝加哥大学博士达米尔·扎法洛夫也认为:“这是一个重要的结果,过去20多年许多著名科研工作者在这方面努力。该问题的研究促进了反推数学和计算性理论方面的研究。”

916,美国芝加哥大学数理逻辑学术会议上,云集来自欧美的许多数理逻辑专家、学者。刘嘉忆作为亚洲高校唯一一位代表在会上作了40分钟报告。他在数理逻辑方面的研究成果,让与会专家、学者对这位来自中国的“80后”投上赞许的目光。

有准备的人

单薄的身子,略显苍白的脸上架着一副眼镜,不时而至的羞涩表情,这是记者8日在中南大学校园见到刘嘉忆时的第一印象。

“我能走到今天这一步,只是运气比别人好些。”面对记者的探究,刘嘉忆淡淡地说。

祖籍大连的刘嘉忆,父亲在当地一家国企后勤部门工作,母亲在一家企业任工程师。他告诉记者,父母并没有给予他数学方面的遗传基因和教育,自己上小学时也没有对数学表现出特别的爱好。

“如果要说我与同龄人有什么不同的话,那就是我对数学的特别关注。”刘嘉忆说,“上初中时,一些同学还在为数学教科书上的习题抓耳挠腮时,我就开始自学数论了。”

数论指研究整数性质的一门理论。刘嘉忆说,当时,对其他同学来说,看初等数论中的整除理论、同余理论、连分数理论像是在看“天书”,而他却学得津津有味。

2008年,刘嘉忆以优异成绩考上中南大学数学科学与计算技术学院。按说,有了扎实的数学基础,刘嘉忆应该崭露头角,但每次数学考试,他的成绩并不拔尖。

对此,刘嘉忆解释说:“这只怪我马虎惯了。考试中,我的演算过程太乱、解答不太标准,都影响分数。”而他的同学则认为,刘嘉忆当时在数学领域涉猎范围十分广泛,不太在意学校的每次考试,不愿显山露水。

刘嘉忆的同学高涛说,在课堂上,他并没有表现得与众不同,但每到课余时间,他就会去图书馆,一回来,准会带上一大堆全英文数学书籍,常常看到深夜。同学问他题目,发现他的思路与他人不一样,还会用更简单的方法来计算或解释。“我们当时都知道他对数学钻得很深。”高涛说。

大二时,刘嘉忆开始学习数理逻辑。数理逻辑是数学基础的一个不可缺少的组成部分。相对其他数学课程,他对此表现出特别的偏爱。他的任课老师也看出了他的不一般,给予他许多指导和鼓励。何伟教授在组合学课程中提及拉姆齐二染色定理——这正是刘嘉忆几个月来冥想苦思的问题。从此,他更坚定了攻克这个难题的信心。

“其实,我在思考这个命题时好像灵光一现,论证倒没有花费太多的时间。”刘嘉忆说,“如果一定要总结点什么,可能与我平时的积累有关吧。”

40岁的计划

刘嘉忆的成功无疑给中南大学师生以莫大鼓舞。数学科学与计算技术学院院长刘再明告诉记者,为了让刘嘉忆尽快进入该领域的学习和研究工作,学校决定让他提前毕业,并立即录取为硕博连读的研究生或直接攻读博士学位。今年7月,著名数学家、中南大学博导侯振挺教授了解刘嘉忆的情况后,千方百计为他创造条件,鼓励他参加有代表性的学术会议,并收他为徒,共同探讨学术问题。

刘嘉忆向记者坦言,除了数学,他还喜欢物理,但他权衡了一下,物理需要做大量的试验,需要成本,对一个学生来说还没那么多资金。他还喜欢心理学,他曾设计了一组关于认知的心理实验,然而他更热衷于数理逻辑。他说这些等到他40岁以后再来做,40岁以前要攻数学。

前不久,刘嘉忆投给《美国数学会汇刊》的论文也获得威士康星大学、伯克利大学等几位教授很高的评价,有望在不久的将来公开发表。(《新民晚报》2011-10-10

 

附录:什么是“西塔潘猜想”

“西塔潘猜想”又称“拉姆齐二染色定理”,是由英国数理逻辑学家西塔潘于上个世纪90年代提出的一个猜想。在组合数学上,拉姆齐(Ramsey)定理要解决的的问题是:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识。

这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。拉姆齐数的定义拉姆齐数,用图论的语言有两种描述:对于所有的N顶图,包含k个顶的团或l个顶的独立集。具有这样性质的最小自然数N就称为一个拉姆齐数,记作R(k,l);在着色理论中是这样描述的:对于完全图Kn的任意一个2边着色(e1,e2),使得Kn[e1]中含有一个k阶子完全图,Kn[e2]含有一个l阶子完全图,则称满足这个条件的最小的n为一个拉姆齐数。(注意:Ki按照图论的记法表示i阶完全图)拉姆齐证明,对于给定的正整数数klR(k,l)的答案是唯一和有限的。拉姆齐数亦可推广到多于两个数:对于完全图Kn的每条边都任意涂上r种颜色之一,分别记为e1,e2,e3,...,er,在Kn中,必定有个颜色为e1l1阶子完全图,或有个颜色为e2l2阶子完全图……或有个颜色为erlr阶子完全图。符合条件又最少的数n则记为R(l1,l2,l3,...,lr;r)。 拉姆齐数的数值或上下界已知的拉姆齐数非常少,保罗·艾狄胥曾以一个故事来描述寻找拉姆齐数的难度:“想像有队外星人军队在地球降落,要求取得R(5,5)的值,否则便会毁灭地球。在这个情况,我们应该集中所有电脑和数学家尝试去找这个数值。若它们要求的是R(6,6)的值,我们要尝试毁灭这班外星人了。”显然易见的公式: R(1,s)=1 R(2,s)=s R(l1,l2,l3,...,lr;r)=R(l2,l1,l3,...,lr;r)=R(l3,l1,l2,...,lr;r)(将li的顺序改变并不改变拉姆齐的数值)。 r,s 3 4 5 6 7 8 9 103 6 9 14 18 23 28 36 40 – 434 9 18 25 35 – 41 49 – 61 56 – 84 73 – 115 92 – 1495 14 25 43 – 49 58 – 87 80 – 143 101 – 216 125 – 316 143 – 4426 18 35 – 41 58 – 87 102 – 165 113 – 298 127 – 495 169 – 780 179 – 11717 23 49 – 61 80 – 143 113 – 298 205 – 540 216 – 1031 233 – 1713 289 – 28268 28 56 – 84 101 – 216 127 – 495 216 – 1031 282 – 1870 317 – 3583 317 – 60909 36 73 – 115 125 – 316 169 – 780 233 – 1713 317 – 3583 565 – 6588 580 – 1267710 40 – 43 92 – 149 143 – 442 179 – 1171 289 – 2826 317 – 6090 580 – 12677 798 – 23556R(3,3,3)=17 R(3,3)等于6的证明证明:在一个K6的完全图内,每边涂上红或蓝色,必然有一个红色的三角形或蓝色的三角形。任意选取一个端点P,它有5条边和其他端点相连。根据鸽巢原理,3条边的颜色至少有两条相同,不失一般性设这种颜色是红色。在这3条边除了P以外的3个端点,它们互相连结的边有3条。若这3条边中任何一条是红色,这条边的两个端点和P相连的2边便组成一个红色三角形。若这3条边中任何一条都不是红色,它们必然是蓝色,因此,它们组成了一个蓝色三角形。而在K5内,不一定有一个红色的三角形或蓝色的三角形。每个端点和毗邻的两个端点的线是红色,和其余两个端点的连线是蓝色即可。这个定理的通俗版本就是友谊定理。

20108月,中南大学数学科学与计算技术学院酷爱数理逻辑的刘嘉忆(即刘路)在自学反推数学的时候,第一次接触到拉姆齐二染色定理,并在阅读大量文献时发现,海内外不少学者都在进行反推数学中的拉姆齐二染色定理的证明论强度的研究。这是由英国数理逻辑学家西塔潘于上个世纪90年代提出的一个猜想,10多年来许多著名研究者一直努力都没有解决。同年10月的一天,刘嘉忆突然想到利用之前用到的一个方法稍作修改便可以证明这一结论,连夜将这一证明写出来,投给了数理逻辑国际权威杂志《符号逻辑杂志》。

20115月,由北京大学、南京大学和浙江师范大学联合举办的逻辑学术会议在浙江师范大学举行,还是大三学生的刘嘉忆(刘路)应邀参加了这次会议,报告了他对目前反推数学中的拉姆齐二染色定理的证明论强度的研究。刘嘉忆的报告给这一悬而未决的公开问题一个否定式的回答,彻底解决了西塔潘的猜想。

《符号逻辑杂志》的主编、逻辑学专家、芝加哥大学数学系邓尼斯·汉斯杰弗德看到论文后给他写信:“我是过去众多研究该问题而无果者之一,看到这一问题的最终解决感到非常高兴,特别如你给出的如此漂亮的证明,请接受我对你令人赞叹的惊奇的成果的祝贺!”同时,邓尼斯·汉斯杰弗德教授高兴地将刘嘉忆的研究介绍给了其他几位同仁和专家,他们一起审读、反复商讨。

论文审稿人、芝加哥大学博士达米尔·扎法洛夫也认为:“这是一个重要的结果,过去20多年许多著名科研工作者在这方面进行努力。该问题的研究促进了反推数学和计算性理论方面的研究。”

2011916,美国芝加哥大学数理逻辑学术会议上,云集了来自欧美的许多数理逻辑专家、学者。大会邀请了12位专家、学者作学术报告,刘嘉忆作为亚洲高校唯一一位代表在会上作了40分钟报告。他在数理逻辑方面的研究成果,让与会专家、学者对这位来自中国的“80后”投上赞许的目光。刘嘉忆表示,他投给《美国数学会汇刊》的论文获得威士康星大学、伯克利大学等几位教授很高的评价,有望公开发表。