自由之战官网九游:由入门到精通----吃透PID-技术中心-中国工控网

来源:百度文库 编辑:九乡新闻网 时间:2024/04/20 10:52:58
 
 
 
PLC DCS PAC PC-BASED CPCI/PXI 嵌入式系统 专用控制器 SCADA 自动化软件 人机界面 工业以太网 现场总线 无线通讯 低压变频器 高压变频器 运动控制 机械传动 机器视觉 传感器 现场仪表 显示控制仪表 分析测试仪表 执行机构 工业安全 低压电器 电源

 

        很久以前,我觉得自动控制很难。老师给我找到了整定口诀,我还是迷迷瞪瞪的,不知道怎么应用。

        不久后来,我觉得自动控制很简单。说白了也就那么回事,夸张点说,中学生都可以掌握。

        相信你们都见过那个PID整定口诀。不嫌麻烦,兹抄录如下:

参数整定找最佳, 从小到大顺序查。
先是比例后积分, 最后再把微分加。
曲线振荡很频繁, 比例度盘要放大。
曲线漂浮绕大弯, 比例毒盘往小扳。
曲线偏离回复慢, 积分时间往下降。
曲线波动周期长, 积分时间再加长。
曲线振荡频率快, 先把微分降下来。
动差大来波动慢, 微分时间应加长。
理想曲线两个波, 前高后低四比一。
一看二调多分析, 调节质量不会低。

计划提纲:
第一章  自动调节系统的发展历程
1-1 没有控制理论的世界
1-2 控制论
1-3负反馈
1-4 PID
1-5 怎样投自动
1-6 观察哪些曲线
1-7PID的基本原理
1-8PID的曲线
1-9怎样判断PID


第二章  吃透PID
2-1  几个基本名词
2-2  P——纯比例作用趋势图的特征分析
2-3  I—— 纯积分作用趋势图的特征分析
2-4  D——纯微分作用趋势图的特征分析
2-5  比例积分作用的趋势特征分析
2-6  比例积分为份作用的趋势特征分析
2-7  整定比例带
2-8  整定积分时间

2-9  比例积分微分综合整定

第三章   火电厂自动调节系统
3-1投入自动顺序
3-2高低加
3-3串级系统的参数整定
3-4汽包水位
3-5主汽压力
3-6主汽温度
3-7其它
3-8协调

 

实际讲述会有许多与计划不符。

博客   播客 引用 加为好友 发送消息 回复 yyax   2楼 回复时间:2009-4-17 8:51:12

下面呢?

 

博客   播客 引用 加为好友 发送消息 回复 杖策行吟   3楼 回复时间:2009-4-17 11:51:32

接着第一回,话说......

        杨过出了一会神,再伸手去会第二柄剑,只提起数尺,呛□一声,竟然脱手掉下,在石上一碰,火花四溅,不禁吓了一跳。


        原来那剑黑黝黝的毫无异状,却是沉重之极,三尺多长的一把剑,重量竟自不下七八十斤,比之战阵上最沉重的金刀大戟尤重数倍。杨过提起时如何想得到,出乎不意的手上一沉,便拿捏不住。于是再俯身会起,这次有了防备,会起七八十斤的重物自是不当一回事。
看剑下的石刻时,见两行小字道:


        “重剑无锋,大巧不工。四十岁前恃之横行天下。”


        过了良久,才放下重剑,去取第三柄剑,这一次又上了个当。他只道这剑定然犹重前剑,因此提剑时力运左臂。那知拿在手□却轻飘飘的浑似无物,凝神一看,原来是柄木剑,年深日久,剑身剑柄均已腐朽,但见剑下的石刻道:


        “四十岁后,不滞于物,草木竹石均可为剑。自此精修,渐进于无剑胜有剑之境。”

        金庸笔下的一代大侠杨过,为什么会发生连续两次发生拿剑失误呢?原因很简单,因为他没有学过自动调节系统啊!可见自动调节系统存在于生活的方方面面,何其平常,又何其重要! 呵呵,先吹吹牛皮。


        下面咱们就来说说自动调节系统,它到底是怎么回事,到底是谁先发现的,到底该怎么应用。

博客   播客 引用 加为好友 发送消息 回复 杖策行吟   4楼 回复时间:2009-4-18 6:10:43 自动调节系统说复杂其实也很简单。其实每个人从生下来以后,就逐渐地从感性上掌握了自动调节系统。


比方说桌子上放个物体,样子像块金属,巴掌大小。你心里会觉得这个物体比较重,就用较大力量去拿,可是这个东西其实是海绵做的,外观被加工成了金属的样子。手一下子“拿空了”,打住了鼻子。这是怎么回事?比例作用太强了。导致你的大脑发出指令,让你的手输出较大的力矩,导致“过调”。


还是那个桌子,还放着一块相同样子的东西,这一次你会用较小的力量去拿。可是东西纹丝不动。怎么回事?原来这个东西确确实实是钢铁做的。刚才你调整小了比例作用,导致比例作用过弱。导致你的大脑发出指令,命令你的手输出较小的力矩,导致“欠调”。


还是那个桌子,第三块东西样子跟前两块相同,这一次你一定会小心点了,开始力量比较小,感觉物体比较沉重了,再逐渐增加力量,最终顺利拿起这个东西。为什么顺利了呢?因为这时候你不仅使用了比例作用,还使用了积分作用,根据你使用的力量和物体重量之间的偏差,逐渐增加手的输出力量,直到拿起物品以后,你增加力量的趋势才得以停止。


这三个物品被拿起来的过程,就是一个很好的整定自动调节系统参数的过程。


前面咱们说的杨过拿剑也是一个道理。当他去拿第二柄剑的时候,心里已经预设了比例带,可惜比例带有点大了,用的力量不够,所以没有拿起来。他第二次拿重剑,增强了比例作用,很容易就拿起来重剑。


可是当他拿第三柄剑的时候,没有根据被调节对象的情况进行修改,比例作用还是很大,可是被调量已经很轻了,所以“力道”用过头了。
博客   播客 引用 加为好友 发送消息 回复 杖策行吟   5楼 回复时间:2009-4-18 6:10:59 1 自动调节系统的发展历程
1-1 没有控制理论的世界
虽然说人——甚至连动物都是——从生下来就在掌握自动调节系统,并且在儿童时期就是一个自动调节系统的高手,可以应付很复杂的自动调节系统了,那么我们国家5000年的文明,就没有发展出一条自动调节理论么?
很遗憾地告诉您,没有。
]

自动调节系统的理论,是针对工业过程的控制理论。以前我们国家没有一个完整的工业结构,所以几乎不可能发展出一条自动调节理论的。即使是工业化很早了的欧美,真正完整的自动控制理论的确立,也是很晚时期的事情了。
咱先把理论的事情放到一边,先说说是谁先弄出一套真正的自动调节系统产品的吧。

咱大家都知道蒸汽机是瓦特发明的。可是实际上在此之前还有人在钻研蒸汽推动技术。不嫌累赘的话,咱罗列一下研究蒸汽推动的历史。没有兴趣的可以隔过不看。1606年,意大利人波尔塔(公元1538—1615年)在他撰写的《灵学三问》中,论述了如何利用蒸汽产生压力,使水槽中的液位升高。还阐述了如何利用水蒸汽的凝结产生吸力,使液位下降。在此之后,1615年,法国斯科,1629年,意大利布兰卡,1654年,德国发明家盖里克,1680年,荷兰物理学家惠更斯,法国物理学家帕潘,随后的英国军事工程师托玛斯•沙弗瑞都先后进行了研究。这些研究仅仅是初步探索阶段,还用不到自动调节。1712年英国人托玛斯•纽考门(公元1663~1729年)发明了可以连续工作的实用蒸汽机。可是为什么我们都说蒸汽机是瓦特发明的,不说是纽考门发明的呢?因为他的蒸汽机没有转速控制系统,转速不能控制的话,后果可想而知。纽考门的蒸汽机因为无法控制,最终不能应用。瓦特因为有了转速控制系统,蒸汽机转速可以稳定安全的被控制在合理范围内,瓦特的名字就被写到了教科书上。那么瓦特是怎么实现转速控制的呢?

上图就是瓦特的转速控制的模型。蒸汽机的输出轴通过几个传动部分,最终连接着两个小球,连接小球的棍子的另一端固定。蒸汽机转动的时候,传动部分带动两个小球旋转,小球因为离心力的原因张开,小球连杆带动装置控制放汽阀。如果转速过快,小球张开就大,放汽阀就开大,进汽减少,转速就降低。


可以看出,这是个正作用调节系统。虽然没有任何电子元器件,可是它确确实实就是一个自动调节系统。虽然咱没有资料表明它如何调节参数,可是咱可以想象影响调节参数的因素:小球的位置。小球越靠近连杆根部,抑制离心力的力量就越小,比例作用越大。
瓦特发明了蒸汽机,瓦特又发明了转速控制系统?我总是怀疑,这不应该是一个人的功劳。一个人的能力再大,也不可能搞了这个又搞那个。很可能是一批人共同的成果,或者说,瓦特发明了主要的蒸汽机,其它的东西都寄到瓦特的名下了。不过史书里没有说,咱就权且都当成瓦特一个人的发明吧。


从瓦特之后,工业革命的大门就打开了。我们记住了瓦特,一部分原因就是:他有了可靠的自动调节系统。否则,他的蒸汽机就没有办法控制,要么转速过低,要么转所过高造成危险事故。而瓦特之前的那些人的努力,一部分原因是因为他们没有自动调节系统,我们要找到他们,大约要到大型图书馆某个积满灰尘的角落里了。

瓦特之后的一段时间内,工业革命虽然发展迅速,自动调节系统也有了一个方法,可是他们没有一个清晰的理论作指导,自动控制始终不能上一个台阶。


我们搞自动的都知道,工业控制的对象千差万别,我们不能够都用瓦特的小球进行控制吧?这个理论指导直到二十世纪四十年代才诞生——科学的发展有时候也真够艰难的。

博客   播客 引用 加为好友 发送消息 回复 杖策行吟   6楼 回复时间:2009-4-18 6:11:26

1-2 控制论


许多人都迷信英雄人物,总是相信某一个时代,有那么一个人物横空出世,一下子就解决了一切问题,后人所做的只有是崇拜和赞美了。


其实远不是那么一回事。一切事物的发展都有着清晰的脉络的。即使是爱因斯坦,在他发现相对论之前,前人也为这个伟大理论的诞生作了很多铺路的工作。20世纪末,人们认为物理学的发展似乎已经到了极致,后人似乎不可能在物理大厦上再增加一层楼了,后人所能做的也不过是拧个螺丝,修补窗户什么的工作。当时的科学家们确实发现了物理大厦上有几个螺丝没有拧。他们把这几个螺丝叫做“物理学的天空飘着那么几朵乌云”。科学家们对这几朵乌云深究细考费尽了脑筋,也诞生了许多解释办法,但是解释得都不彻底。突然有那么个爱因斯坦,提出物理大厦要拧紧这几个螺丝,就必须要再增加几层楼——相对论诞生了。有人说,是爱因斯坦一个人凭空想象出了相对论,这是不切合实际的。


咱们的控制论也是这样的。


20世纪之前,人们在考虑怎么控制的时候,总是专注于对被控对象和控制手段,控制水平始终上不了台阶,当然,也可能跟当时对控制水平的要求不高有关。


20世纪30~40年代,人们开始发现控制信息的重要。英美一些数学家或者工程学家对信息在工程中的应用,提出了理论。1932年美国通信工程师H.奈奎斯特发现电子电路中负反馈放大器的稳定性条件,即著名的奈奎斯特稳定判据。


至此,自动控制的准备工作已经做足,只等着一个英雄人物横空出世了。


1945年,美国数学家维纳把乃奎斯特的反馈概念推广到一切工程控制中,1948年维纳发表奠基性著作《控制论》。这本书的副标题是“关于动物和机器中控制和通信的科学”。


在此之前西方没有控制论这个词。维纳先生根据希腊词Kubernetes(舵手)创造了一个词:cybernetics。舵手是干什么的?控制船的方向的。“cyber”一词在今天已经被重新定义为“对电子、机械和生物系统的控制过程的理论性研究,特别是对这些系统中的信息流动的研究。”——由最初的“舵手”变成了后来的“指导者”和“统治者”,由“驾驭航向”转变为“控制别人”。


且慢,维纳说:控制论是“对电子、机械和生物系统的控制过程的理论性研究”?电子需要控制论,机械需要控制论,生物也需要?

恩,咱开头就说了,人们生产活动都离不开的。虽然你在泡小姑娘的时候,从没有想过那讨厌的比例积分微分什么的概念,但是你实际上切切实实无意识地一直在运用控制论的方法。维纳运用自己丰富的学识敏锐的观察深刻的分析,把这些基本原理提炼出来,最终,创立了控制论。


维纳少年时期就是天才,用咱们的话说是神童。咱不了解美国20世纪初的教育制度,我很惊讶维纳11岁就上了大学,学习数学(这个时候我还在上小学学习解应用题),是不是当时美国的大学数学研究的项目是鸡兔同笼?否则一个11岁的小孩子……迷惑中。这个天才兴趣广泛,除了专业之外,还喜欢物理、无线电、生物和哲学。这在当时可能都属于比较热门的学科。14岁他又考入了哈佛大学研究生学院,学习生物学和哲学(这个时候我在上初中,背诵为什么社会主义终将取代资本主义)。18岁获得了哈佛大学数理逻辑博士学位。可能是他的成绩比较突出,后来又专门去欧洲向罗素和希尔伯特学习数学。那么罗素和希尔伯特有什么了不起?这两个人无论在当时还是在科学史上都是不可忽视的人物,都是世界级的大腕啊!。前者写出好多《论哲学》之类的豆腐块文章,曾经一度在国内很流行;写入伯特曾提出了20世纪数学的23个问题,哄着数学家们都一古脑的研究那些问题。名师出高徒,维纳越来越来牛了。


好了,不罗列他上学的内容了。深厚而又广博的学识,为维特将来的工作奠定了坚实的基础。同时,因为他对多种学科都有深入的研究,使得它能够触类旁通,并且能把相邻学科的一些知识方法,应用到另外的学科当中。有些人可能对这一点不太理解。80、90年代,国内兴起一种理论,叫做方法论,它就是专门研究不同学科之间的研究方法的应用的。下面咱们还要说到维纳的广博知识对他的研究起到的作用。


第二次世界大战期间,维纳参与研究美国军方的防空火力自动控制系统的工作。咱们可以大致说一下这种系统的情况。


假如前面来了一辆敌机,当时要打下来这辆敌机,需要知道敌机的方位、高度、速度这些个量,然后根据这两个量算出提前量。也就是说,防空炮要把目标指向飞机前面一段距离,等到打出去的炮弹到达飞机的高度的时候,飞机正好飞到炮弹周围。注意,不是要炮弹贯穿飞机,那样概率太低,而是让炮弹在这个时候正好爆炸,依靠爆 炸的力量把飞机摧毁。这种情况下,我们不仅仅需要敌机的方位、高度、速度,还要计算出提前量和爆炸时间,并且有专门一个人管炸弹的引信,设定几秒钟后爆炸。

这样一个系统是比较复杂的,维纳在研究过程中,提出了一个重要概念:负反馈。咱们搞自动控制的都知道,一个控制系统中,负反馈回路可以使得系统稳定,正反馈使得系统发散。


博客   播客 引用 加为好友 发送消息 回复 杖策行吟   7楼 回复时间:2009-4-22 12:43:29 1-3负反馈


咱们前面说了,维纳在上学期间,精通数学、物理、无线电、生物和哲学。而在电子领域,乃奎斯特已经提出了负反馈回路可以使得系统稳定这个概念。维纳通过在电子学领域的知识,在控制领域取得了重大突破。


其实瓦特的蒸汽转速控制系统,本身也不知不觉地应用了负反馈系统:转速反馈到连杆上后,控制汽阀关小,使得转速降低。只是瓦特没有把这个机构中的原理提炼出来,上升到理论高度。说着容易做着难,这个理论经过了200年才被提出来。


负反馈理论应用非常广泛。维纳本人研究的物理、无线电、生物学,在这些领域都广泛的应用着负反馈原理,这些学科很可能都给他提出负反馈理论以支持。不光物理、无线电、生物学使用负反馈,也不光工业控制使用负反馈,大到国家宏观调控,中到商业管理,小到个人的行为,角角落落,无不出现负反馈的身影。


国家每一项宏观调控政策出台后,总要收集各种数据观察政策发布后的效果,这个收集的信息叫反馈。对收集到的信息如何处理呢?比如发现政策使得经济过热了,那么下一步就要修改政策,抑制经济过热。我们总要把这个信号进行相反处理,这个对收集到的信号进行相反处理的办法叫做负反馈。


朱镕基先生在当总理的时候,发现电力建设过快,就严格控制电力建设的审批,使得电力建设的步伐放缓。等到温家宝先生当总理的时候,发现坏了,电力建设步伐过慢,与国家的快速经济发展不相适应,国家到处出现电荒。于是温政府放松电力建设审批,电力建设急速加快。过了几年发现又坏了,电力建设审批门槛过低,能源浪费严重。然后开始实行适度控制电力建设的办法,电力建设得到良好有序地发展。


这一段时期对电力建设的控制是个比较典型的负反馈过量的问题。看样子,温家宝先生似乎比朱镕基先生在自动控制方面学习成绩要好一点。不过也不好说,说不定是前车之鉴,使得后来总结了经验。


维纳当年就认识到反馈信息过量的后果。这里还涉及到一个问题,就是控制过度,使得系统发生震荡。控制过度其实就是比例带过小。负反馈是不是过量,也跟比例带的设置有关系。这些个问题在后面的“稳定性”章节中具体探讨。


商业管理中也广泛应用负反馈原理。最近老板们总是强调执行力。执行力怎么体现?收集反馈信息。老板们往往要求我们命令要有回复,回复就是反馈。如果老板们还要判断命令是否合理,那就需要用负反馈原理。


我们走路的时候,不能闭着眼睛,因为眼睛是反馈环节。即使视力出现故障,也要有导盲犬、探路棍、盲道等措施弥补,所有这些措施都是提供反馈环节。大脑收集到反馈以后,一定会进行负反馈处理。为什么是负反馈呢?走路的时候,眼睛看路,他会告诉你个信号:偏左了,偏右了,然后让你脑子进行修正。信号发到你脑子里面后,你脑子里要对反馈信号与目标信号相减,然后进行修正。偏左了就向右点,偏右了就向左点。对这个相减的信号就是负反馈。如果相加就是正反馈了,那样走着走着你就掉进坑里去了。


但是,保证你不掉进坑里,那仅仅是给你怎样走路给了一个大致的方向。具体每一步走多大,向左向右偏多少,还要进行具体计算。前面说的都是定性的问题,步子走多大,向左右偏多少是定量的问题。光定性不定量还是没办法控制的。下面就介绍如何定量:

博客   播客 引用 加为好友 发送消息 回复 你我有缘   8楼 回复时间:2009-4-22 22:38:59

经典,希望继续,学习中……

博客   播客 引用 加为好友 发送消息 回复 plq   9楼 回复时间:2009-4-22 22:41:51

楼主颇有些才气!   

 

 

博客   播客 引用 加为好友 发送消息 回复 潜水艇01   10楼 回复时间:2009-4-22 23:00:29 搂主厉害,期待继续中。。。 博客   播客 引用 加为好友 发送消息 回复 杖策行吟   11楼 回复时间:2009-4-23 8:05:56 1-4 调节器

控制理论这个大厦基本上建立起来了。其实我更关心的是PID控制方法的建立。说老实话,我总觉得维纳虽然伟大,可是总觉得他的理论不那么“精巧”,说白了谁都能明白。相比之下,我对PID理论的发明人更加佩服。说起来非常简单,不就是比例积分微分运算么,可具体要提出这种方法,还是需要一定的天才的。
PID是什么?

要弄清楚怎样定量之前,我们先要理解一个最基本的概念:调节器。调节器是干什么的?调节器就是人的大脑,就是一个调节系统的核心。任何一个控制系统,只要具备了带有PID的大脑或者说是控制方法,那它就是自动调节系统。如果没有带PID的控制方法呢?那可不一定不是自动调节系统,因为后来又涌现各种控制思想。比如时下研究风头最劲的模糊控制,以前还有神经元控制等等;后来又产生了具有自组织能力的调节系统,说白了也就是自动整定参数的能力;还有把模糊控制,或者神经元控制与PID结合在一起应用的综合控制等等。在后面咱们还会有介绍。咱们这个文章,只要不加以特殊说明,都是指的是传统的PID控制。可以这样说:凡是具备控制思想和调节方法的系统都叫自动调节系统。而放置最核心的调节方法的东西叫做调节器。


基本的调节器具有两个输入量:被调量和设定值。被调量就是反映被调节对象的实际波动的量值。比如水位温度压力等等;设定值顾名思义,是人们设定的值,也就是人们期望被调量需要达到的值。被调量肯定是经常变化的。而设定值可以是固定的,也可以是经常变化的,比如电厂的AGC系统,机组负荷的设定值就是个经常变化的量。


基本的调节器至少有一个模拟量输出。大脑根据情况运算之后要发布命令了,它发布一个精确的命令让执行机构去按照它的要求动作。在大脑和执行机构(手)之间还会有其他的环节,比如限幅、伺服放大器等等。有的限幅功能做在大脑里,有的伺服放大器做在执行机构里。
上面说的输入输出三个量是调节器最重要的量,其它还有许多辅助量。比如为了实现手自动切换,需要自动指令;为了安全,需要偏差报警等等。这些可以暂不考虑。为了思考的方便,咱们只要记住这三个量:设定值、被调量、输出指令。


事实上,为了描述方便,大家习惯上更精简为两个量:输入偏差和输出指令。输入偏差是被调量和设定值之间的差值,这就不用罗嗦了吧?
博客   播客 引用 加为好友 发送消息 回复 1113   12楼 回复时间:2009-4-23 8:50:43

顶                                                                                                    

博客   播客 引用 加为好友 发送消息 回复 qingshanlcz   13楼 回复时间:2009-4-23 9:50:06

很好,楼主比喻很形象,这样学东西才有意思,比老师讲的有趣多了!继续!!!

博客   播客 引用 加为好友 发送消息 回复 qq410740535   14楼 回复时间:2009-4-23 20:28:27 好啊     期待更新啊  、。。。。。 博客   播客 引用 加为好友 发送消息 回复 任昊   15楼 回复时间:2009-4-23 20:38:53 引用qq410740535 的回复内容:好啊     期待更新啊  、。。。。。



博客   播客 引用 加为好友 发送消息 回复 newchp   16楼 回复时间:2009-4-23 21:44:47 楼主,接着来讲哈!前面讲得不错 博客   播客 引用 加为好友 发送消息 回复 东北风   17楼 回复时间:2009-4-23 22:02:35 楼主,接着来讲哈!前面讲得不错
博客   播客 引用 加为好友 发送消息 回复 杖策行吟   18楼 回复时间:2009-4-24 8:03:30 1-5 PID



回到刚才的提问:什么是PID?
P就是比例,就是输入偏差乘以一个系数;
I就是积分,就是对输入偏差进行积分运算;
D就是微分,对输入偏差进行微分运算。


就这么简单。很多年后,我还始终认为:这个理论真美!


这个方法的发明人似乎是尼可尔斯(Nichols)。我手头没有更多资料,不能确定是不是尼可尔斯发明的。可是PID参数的整定方法确实是他做的。


其实这个方法已经被广大系统维护者所采用,浅白一点说,就是先把系统调为纯比例作用,然后增强比例作用让系统震荡,记录下比例作用和震荡周期,然后这个比例作用乘以0.6,积分作用适当延长。虽然本文的初衷是力图避免繁琐的计算公式,而用门外汉都能看懂的语言来叙述工程问题,可是对于最基本的公式还要涉及以下的,况且这个公式也很简单,感兴趣的看一下,不感兴趣的可以不看哈。公式表达如下:
  Kp = 0.6*Km
   Kd = Kp*π/4*ω
   Ki = Kp*ω/π
Kp为比例控制参数
   Kd为微分控制参数
   Ki为积分控制参数
   Km为系统开始振荡时的比例值;
   ω为极坐标下振荡时的频率


这个方法只是提供一个大致的思路,具体情况要复杂得多。比如一个水位调节系统,微分作用可以取消,积分作用根据情况再调节;还有的系统超出常人的理解,某些参数可以设置得非常大或者非常小。具体调节方法咱们后面会专门介绍。微分和积分对系统的影响状况后面也会专门分析。


科学家们都说科学当中存在着美。我的理解,那种美是力图用最简洁的定义或者公式,去描述宇宙万物的运行规律。比如牛顿的三大运动规律,和他的加速度和力的关系的公式:F=ma。表达极其简洁,涵盖范围却非常之广,所以它们都很美。同样的,我们的PID调节法也是这样的,叙述极简洁,可在调节系统中应用却极普遍。所以,不由得人不感叹它的美!不过说实话,PID控制法虽然精巧,可是并不玄奥。


现在,世界控制理论有了更大的发展,涌现出了各种各样控制方法。比如神经元控制、模糊控制等等,这些控制过程中,我只接触过模糊控制。用我自己最粗浅的理解,要是对控制系统要求更为精准严格的话,还是要用PID控制来配合的。并且,对于火电厂自动调节系统,我还没有发现有哪种系统用PID调节法不能实现的。如果你认为你所观察的某个系统,单纯用传统的PID调节方法不能解决问题,那存在两个可能:一是你的控制策略可能有问题,二是你的PID参数整定得不够好。
PID控制法已经当之无愧的成了经典控制方法。我们要讲的,也就是这种经典的PID控制。
博客   播客 引用 加为好友 发送消息 回复 seseqq   19楼 回复时间:2009-4-24 8:25:00

哈哈

楼主辛苦了               

博客   播客 引用 加为好友 发送消息 回复 starsir   20楼 回复时间:2009-4-25 10:44:07

学习楼主辛苦lllllllllllll

博客   播客 引用 加为好友 发送消息 回复 pangpp   21楼 回复时间:2009-4-25 11:33:48 回复内容:
对:seseqq 关于

哈哈

楼主辛苦了               

内容的回复:


博客   播客 引用 加为好友 发送消息 回复 杖策行吟   22楼 回复时间:2009-4-25 11:43:30 我希望大家觉得哪里不合适了就提出来,给个修改的建议

谢谢!
博客   播客 引用 加为好友 发送消息 回复 168888   23楼 回复时间:2009-4-25 11:46:27 经典,希望继续,学习中……
博客   播客 引用 加为好友 发送消息 回复 winter938   24楼 回复时间:2009-4-25 11:57:45 楼主辛苦了 ,请继续精彩下去! 博客   播客 引用 加为好友 发送消息 回复 cquchenyang   25楼 回复时间:2009-4-25 12:06:17

好帖,望继续精彩下去

博客   播客 引用 加为好友 发送消息 回复 13921060096zx   26楼 回复时间:2009-4-28 16:49:34 嗯!真的不错,能学到好多东西哦!好期待继续! 博客   播客 引用 加为好友 发送消息 回复 深水渔   27楼 回复时间:2009-4-28 17:13:14 楼主,接着来讲哈!前面讲得不错
                我真在学习  PID 哦   感谢楼主..... 博客   播客 引用 加为好友 发送消息 回复 杖策行吟   28楼 回复时间:2009-4-28 20:48:56 1-5 怎样投自动


判断一个人是不是业内人士的方法之一,就是看他说不说外行话,有时候甚至一个词语就可以判断。判断修改确认PID参数的过程,咱们业内人士有个专用词语:整定。如果读者现在跟谁谁谈话的时候,说PID整定怎么怎么,那么,恭喜你,你是“业内人士”了。


我刚上班的时候,对自动调节系统一窍不通。在学校仅仅学过一本《热力过程自动化》,一毕业都还给老师了。一上班为了跟上别人,狠劲学习电工电子,以为能维修执行器变送器就可以做好自动工作了。后来一个师傅一句话点醒了我。他说:在自动专业,水平的高低最直接的衡量办法——会不会投自动,也就是看会不会整定参数。当时我就想:自动该有多复杂多难学啊!


等我后来掌握了,突然觉得,原来整定参数是这么的简单!


原来整定参数是这么的简单!是的,其实很简单。任何人,只要下过一番功夫,方法对头,就一定能够搞好自动。记住:方法要对。确立了方法之后,下一番枯燥的功夫,观察分析尝试总结,由浅入深,最后你就一定能够投好一套简单的自动。复杂的自动还需要另外一项功夫:多学习,多与运行人员交流。


记住:多与运行人员交流。这是我告诉你们的第一条秘诀。聊天聊得好就等于看书了。有时候甚至比看书还好。这个秘诀我轻易不传给别人的哦。


说了一个秘诀,干脆告诉你另一个秘诀:其实咱们前面说过了,要肯下一番枯燥的功夫,去了解比例积分微分的最基本最本质最浅显的原理。等到你了解了比例积分微分的最基本原理,那你就能够判断它们是如何影响调节曲线的了,进而就能够整定参数了,进而你就是行家了。


要掌握复杂的公式么?可以不掌握。当然,能掌握我也不反对,它们其实是很有用的。


成为行家原来这么简单。那么你怎么判断一个人是不是自动的行家呢?很简单,我的经验,你只要看他观察哪些曲线就可以了。

博客   播客 引用 加为好友 发送消息 回复 得意的笑   29楼 回复时间:2009-4-28 21:29:16 好帖,望继续精彩下去
博客   播客 引用 加为好友 发送消息 回复 lq139588   30楼 回复时间:2009-5-1 9:45:45 好帖,望继续精彩下去
博客   播客 引用 加为好友 发送消息 回复 变幻莫测   31楼 回复时间:2009-5-1 10:27:42

楼主才气不错 继续精彩

博客   播客 引用 加为好友 发送消息 回复 杖策行吟   32楼 回复时间:2009-5-4 8:23:47

1-7 观察哪些曲线


我曾经见过一个自动好手整定参数,我看他收集的曲线后,我就断定这个自动他投不好。给他提建议,但是因为他的名望比较高,没有听取咱的建议。后来果然没投好。


观察曲线是发现问题的最方便的办法。


现在DCS功能很强大,想收集什么曲线就收集什么曲线,只要这个测点被引入DCS。最初可不是这样的。90年代初我用的是DDZ-II型调节器,后来是MZ-III组件型调节系统,再后来是KMM调节器,后来才有了集中控制系统,再后来有了DCS。前三种都不能显示曲线的。只能靠两只眼睛盯着指针或者数字,根据记忆去判断调节曲线,那个费劲啊!可是当时我并不觉得费劲,现在用惯了DCS以后,再拐回头去看数字,才觉得真费劲!还是老话说得好:由俭入奢易,由奢入俭难啊。


那么到底要观察哪些曲线呢?


说实话,开始我没有把这个事情当成个问题,觉得是水到渠成的事情。可后来我发现许多人都不善于收集曲线,才觉得有必要说一下。


我们要收集的曲线有:
1、 设定值。作为比较判断依据;
2、 被调量波动曲线。
3、 PID输出。


就这么简单。如果是串级调节系统,我们还要收集:


4、 副调的被调量曲线;
5、 PID输出曲线。


为什么不收集副调的设定值了?因为主调的输出就是副调的设定啊。


在一个比较复杂的调节系统中,副调的被调量往往不只一个,那就有几个收集几个。


只有收集到了这些曲线后,你才能根据曲线的波动状况进行分析。


还有的调节系统更加复杂。投不好自动,总要去分析其原因,看看有什么干扰因素存在其中,你怀疑哪个因素干扰就把哪个曲线放进来。一般的DCS都支持8组曲线在一个屏幕中,如果放不下,你就考虑怎么精简吧。


不过现在咱们还没有到那个地步,复杂调节系统在后面介绍。


我估计早就有人等得不耐烦了。自动调节系统,归根结底在于整定PID,如果不会整定PID,该多掉份!可是最见功夫的,最考验能力的也就是PID参数的整定了。PID的整定有多难?


一点都不难!只要你找着我的话去做,一步步训练下去,保证你也成为整定PID的行家里手。

博客   播客 引用 加为好友 发送消息 回复 lq139588   33楼 回复时间:2009-5-5 21:25:46 ...................................................... 博客   播客 引用 加为好友 发送消息 回复 zhangxpjxh   34楼 回复时间:2009-5-5 21:52:22 楼主才气不错 继续精彩
博客   播客 引用 加为好友 发送消息 回复 ts12345   35楼 回复时间:2009-5-7 13:22:10 搂主厉害,期待继续中。。。 博客   播客 引用 加为好友 发送消息 回复 杖策行吟   36楼 回复时间:2009-5-10 20:42:23 2 PID参数整定

上一章简单介绍了自动调节的发展历程。搞自动的人,许多人对如何整定PID参数感到比较迷茫。这个东西其实一点都不高深,上过初中的人,只要受过严格训练,都可以成为整定参数的好手。什么?初中生理解积分微分的原理么?恩,初中生没有学过微积分,可是一旦你给他讲清楚微积分的物理意义,然后认真训练判断曲线的习惯和能力,完全可以掌握好PID的参数整定。

怎么才算受过严格训练呢?我不了解别人是怎么训练的,我只根据我自己理解的情况,把我认为正确的理解给大家讲述一下。咱既然说了,初中生都可以理解,那么咱依旧避免繁琐的公式推导,只对其进行物理意义分析。

提前声明:这些物理意义的分析,非常简单,非常容易掌握,但是你必须要把下面一些推导结论的描述弄熟弄透,然后才能够进行参数整定。很简单的哦。

在介绍PID参数整定之前,先介绍几个基本概念:



2-1 几个基本概念

单回路:就是指有一个PID的调节系统。

串级:一个PID不够用怎么办?把两个PID串接起来,形成一个串级调节系统。又叫双回路调节系统。在第三章里面,咱们还会更详细的讲解串级调节系统。在此先不作过多介绍。

正作用:比方说一个水池有一个进水口和一个出水口,进水量固定不变,依靠调节出水口的水量调节水池水位。那么水位如果高了,就需要调节出水量增大,对于PID调节器来说,输出随着被调量增高而增高,降低而降低的作用,叫做正作用。

负作用:还是这个水池,我们把出水量固定不变,而依靠调节进水量来调节水池水位。那么如果水池水位增高,就需要关小进水量。对于PID调节器来说,输出随着被调量的增高而降低的作用叫做负作用。

动态偏差:在调节过程中,被调量和设定值之间的偏差随时改变,任意时刻两者之间的偏差叫做动态偏差。简称动差。

静态偏差:调解趋于稳定之后,被调量和设定值之间还存在的偏差叫做静态偏差。简称静差。

回调:调节器调节作用显现,使得被调量开始由上升变为下降,或者由下降变为上升。

博客   播客 引用 加为好友 发送消息 回复 tl2007   37楼 回复时间:2009-5-10 21:04:31 精彩!学习!谢谢!              博客   播客 引用 加为好友 发送消息 回复 杖策行吟   38楼 回复时间:2009-5-14 20:23:34 2-3 I —— 纯积分作用趋势图的特征分析

I就是积分作用。

一句话简述:如果调节器的输如偏差不等于零,就让调节器的输出按照一定的速度一直朝一个方向累加下去。

积分相当于一个斜率发生器。启动这个发生器的前提是调节器的输如偏差不等于零,斜率的大小与两个参数有关:输入偏差的大小、积分时间。

在许多调节系统中,规定单纯的比例作用是不存在的。它必须要和比例作用配合在一起使用才有意义。我不知道是不是所有的系统都有这么一个规定,之所以说是个规定,是因为,从原理上讲,纯积分作用可以存在,但是很可能没有实用意义。这里不作过分的空想和假设。为了分析方便,咱们把积分作用剥离开来,对其作单纯的分析。

那么单纯积分作用的特性总结如下:
1、 输出的升降与被调量的升降无关,与输入偏差的正负有关。
2、 输出的升降与被调量的大小无关。
3、 输出的斜率与被调量的大小有关。
4、 被调量不管怎么变化,输出始终不会出现节跃扰动。
5、 被调量达到顶点的时候,输出的变化趋势不变,速率开始减缓。
6、 输出曲线达到顶点的时候,必然是输入偏差等于零的时候。

看到了么?纯积分作用的性质很特别。你能根据一个被调量波动波形,画出输出波形么?如果你能画正确,那说明你真正掌握了。

好了,来点枯燥的看图题:

积分作用下,输入偏差变化的响应曲线与比例作用有很大的不同。假设被调量偏高时调门应关小,在定值有一个阶跃扰动时,输出不会作阶跃变化,而是以较高的速率开始升高。如图3:

图3:积分作用下的调节曲线

因输出的响应较比例作用不明显,故被调量开始变化的时刻t2,较比例作用缓慢。在t1到t2的时间内,因为被调量不变,即输入偏差不变,所以输出以不变的速率上升,即呈线性上升。调节器的输出缓慢改变,导致被调量逐渐受到影响而改变。

在t2时刻,被调量开始变化时,输入偏差逐渐减小,输出的速率开始降低。
到t3时刻,偏差为0时,输出不变,输出曲线为水平。然后偏差开始为正时,输出才开始降低。
到t4时刻,被调量达到顶点开始回复,但是因偏差仍旧为正,故输出继续降低只是速率开始减缓。
直到t5时刻,偏差为0时,输出才重新升高。

一般来说,积分作用容易被初学者重视,重视是对的,因为它可以消除静态偏差。可是重视过头了,就会形成积分干扰。先不说怎么判断,能认识图形是最重要的。——本文来自北极星电力论坛『BBS.BJX.COM.CN』原帖地址:http://bbs.bjx.com.cn/bbs/viewthread.php?tid=203881&fromuid=0 博客   播客 引用 加为好友 发送消息 回复 9515136   39楼 回复时间:2009-5-15 16:59:50 好好好dddddddddddddddddddddddd 博客   播客 引用 加为好友 发送消息 回复 yjd159   40楼 回复时间:2009-5-15 17:12:52 mark一下,回头再精读 博客   播客 引用 加为好友 发送消息 回复 杖策行吟   41楼 回复时间:2009-5-20 8:05:09 2-4 D —— 纯微分作用趋势图的特征分析

D就是微分作用。单纯的微分作用是不存在的。同积分作用一样,我们之所以要把微分作用单独隔离开来讲,就是为了理解的方便。

一句话简述:被调量不动,输出不动;被调量一动,输出马上跳。

根据微分作用的特点,咱们可以得出如下曲线的推论:
1、 微分作用与被调量的大小无关,与被调量的变化速率有关;
2、 与被调量的正负无关,与被调量的变化趋势有关;
3、 如果被调量有一个,就相当于输入变化的速度无穷大,那么输出会直接到最小或者最大;
4、 微分参数有的是一个,用微分时间表示。有的分为两个:微分增益和微分时间。微分增益 表示输出波动的幅度,搏动后还要输出回归,微分时间表示回归的快慢。见图4,KD是微分增益,TD是微分时间。
5、 由第4条得出推论:波动调节之后,输出还会自动拐回头。

图4:纯微分作用的阶跃反应曲线

都说微分作用能够超前调节。可是微分作用到底是怎样超前调节的?一些人会忽略这个问题。合理搭配微分增益和微分时间,会起到让你起初意想不到的效果。

比例积分微分三个作用各有各的特点。这个必须要区分清楚。温习一下:

比例作用:输出与输入曲线相似。
积分作用:只要输入有偏差输出就变化。
微分作用:输入有抖动输出才变化,且会猛变化。
博客   播客 引用 加为好友 发送消息 回复 老泉   42楼 回复时间:2009-5-21 16:24:14

讲地不错,就是看不见图

博客   播客 引用 加为好友 发送消息 回复 〓ECHO〓   43楼 回复时间:2009-5-27 15:02:48 lou zhu .
我们期待你继续。 博客   播客 引用 加为好友 发送消息 回复 hcy0123456   44楼 回复时间:2009-5-27 15:19:52 看楼主的帖子,有纲。有目。生动,细致。可想而知,其工作也类同。学习了。 博客   播客 引用 加为好友 发送消息 回复 杖策行吟   45楼 回复时间:2009-5-27 16:27:42 2-5比例积分作用的特征曲线分析

彻底搞清楚PID的特征曲线分析后,我们再把PID组合起来进行分析。大家作了这么久的枯燥分析,越来越接近实质性的分析了。

比例积分作用,就是在被调量波动的时候,纯比例和纯积分作用的叠加,简单的叠加。

普通的维护工程师最容易犯的毛病,就是难以区分波动曲线中,哪些因素是比例作用造成的,哪些因素是积分作用造成的。要练就辨别的功夫,咱还是要费些枯燥的时间,辨认些图吧。友情提示:这么枯燥的看图说话,可能是最后第二个了。胜利在望啊朋友们。

如图5,定值有阶跃扰动时,比例作用使输出曲线Tout同时有一个阶跃扰动,同时积分作用使Tout开始继续增大。

t2时刻后,被调量响应Tout开始增大。此时比例作用因△e减小而使Tout开始降低(如图中点划线Tout(δ)所示);但是前文说了积分作用与△e的趋势无关,与△e的正负有关,积分作用因△e还在负向,故继续使Tout增大,只是速率有所减缓。比例作用和积分作用的叠加,决定了Tout的实际走向,如图Tout(δi)所示。

只要比例作用不是无穷大,或是积分作用不为零,从t2时刻开始,总要有一段时间是积分作用强于比例作用,使得Tout继续升高。然后持平(t3时刻),然后降低。

在被调量升到顶峰的t5时刻,同理,比例作用使Tout也达到顶点(负向),而积分作用使得最终Tout的顶点向后延时(t6时刻)。

从上面的分析可以看出:判断t6时刻的先后,或者说t6距离t5的时间,是判断积分作用强弱的标准。
一般来说,积分作用往往被初学者过度重视。因为积分作用造成的超调往往被误读为比例作用的不当。

而对于一个很有经验的整定高手来说,在一些特殊情况况下,积分作用往往又被过度漠视。因为按照常理,有经验的人往往充分理解积分作用对静态偏差的作用,可是对于积分作用特殊情况下的灵活运用,却反而不容易变通。

以前看史书,毛泽东曾指着邓小平对一个苏联人说:瞧见那个小个子了没有?这个人很了不起,既有原则性,又有灵活性。

瞧见没有,最高明的政治家们都注重原则性和灵活性之间的微妙的关系,咱们搞自动的,实际上也离不开原则性和灵活性啊。

当然了,对于一般的初学者,还不到感悟灵活性的时候。初学者只有老老实实先把原则掌握再说。灵活性是建立在原则的基础之上的。就如同现实生活中一样,没有原则的灵活是什么?老滑头。

什么时候才可以灵活?等你能够彻底解读调节曲线,并能够迅速判断参数大小的时候,才可以稍微尝试了解灵活性。千万不要耍滑头哦。

博客   播客 引用 加为好友 发送消息 回复 FDD1997   46楼 回复时间:2009-5-27 17:05:04

复杂的简单化,简单的复杂化

 

 

 

 

 

博客   播客 引用 加为好友 发送消息 回复 yinhe123321   47楼 回复时间:2009-5-27 17:14:50 前面还好,到了后面就不好似一个滋味了 博客   播客 引用 加为好友 发送消息 回复 杖策行吟   48楼 回复时间:2009-5-27 17:49:10

是啊,后面涉及到深层次的理解和思考,不能都用故事来讲。

不过我力求一张一弛,在深入思考的同时,再插入一些与之相关的简单的轻松的话题。苦尽甘来,没有严格的思考是学不好自动的

博客   播客 引用 加为好友 发送消息 回复 遨游工控   49楼 回复时间:2009-5-27 18:29:45 说的很不错。容易理解。楼主继续。 博客   播客 引用 加为好友 发送消息 回复 flywaterxj   50楼 回复时间:2009-5-27 18:57:55

楼主太强了,有才,呵呵

总记录数 77 总页数 2 当前页 1 93 1 2 4:     笔名: 游客   修改 保存   取消 内容: 用户名: 密码: 如果您还不是中国工控网(www.gongkong.com)的注册用户,立刻免费注册! ·中国工控网BBS经营许可证编号:京ICP证020079号。
  ·请确认您的言论符合《互联网电子公告服务管理规定》《全国人大常委会关于维护互联网安全的规定》及中国工控网工控论坛规范条例。
gongkongMP提示: 发布“主题文章” +3分/篇;自己删除主题 -3分/篇;被管理员删除主题 -10分/篇 关于gongkongMP
中国工控网所有信息→ 自动化厂商 - 自动化产品 - 技术论文 - 方案与应用 - 自动化新闻 - 资料下载 - 技术文摘 - 论坛帖子 - ENGLISH
联系我们 | 服务介绍 | 本站介绍 | 用户注册| 用户反馈| 有奖报错 | 帮助信息 | 网站地图 | 今日更新 | 历史首页 | 版权声明 | 友情链接
中国工控网(www.gongkong™.com)版权所有
© Copyright By China Industrial Control Net
京ICP证020079号
电信业务审批[2002]字第180号